用于记录心电图和肌电图信号的土豆皮电极

IF 5.4 Q1 CHEMISTRY, ANALYTICAL Sensing and Bio-Sensing Research Pub Date : 2024-06-01 DOI:10.1016/j.sbsr.2024.100664
Goran M. Stojanović, Željko Popović, Lazar Milić, Mitar Simić
{"title":"用于记录心电图和肌电图信号的土豆皮电极","authors":"Goran M. Stojanović,&nbsp;Željko Popović,&nbsp;Lazar Milić,&nbsp;Mitar Simić","doi":"10.1016/j.sbsr.2024.100664","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable measurement and acquisition of physiological parameters is among critical tasks in human health monitoring. While the presence of personalized measurement of Electrocardiography (ECG) and Electromyography (EMG) devices enables more frequent data collection, and consequently better health monitoring, it also leads to higher consumption of electrodes. On the other hand, commonly used Ag/AgCl electrodes are not free of charge or biodegradable. Therefore, their extensive use leads to higher costs and higher waste production. In this paper, we present an approach for the development of ECG/EMG electrodes that are based on biodegradable materials (two potato types). We performed successful integration of potato peel-based electrodes with the commercial device as well as with our in-house developed portable system. Measurements on 8 healthy volunteers revealed very small differences when heart rate, inter-beat-interval or normal-to-normal intervals are extracted from the ECG signal with potato peel-based and commercial Ag/AgCl electrodes. Our study demonstrates the feasibility of utilizing biodegradable potato peel-based electrodes for ECG and EMG measurements, showcasing their comparable performance to traditional Ag/AgCl electrodes in capturing physiological parameters. We introduced biodegradable electrodes as a viable and eco-friendly alternative for accurate ECG and EMG measurements, addressing the issues of electrode waste and cost associated with conventional electrodes.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000461/pdfft?md5=077d48f63e06460d9654f56ec1a36ecb&pid=1-s2.0-S2214180424000461-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Potato peels-based electrodes for recording ECG and EMG signals\",\"authors\":\"Goran M. Stojanović,&nbsp;Željko Popović,&nbsp;Lazar Milić,&nbsp;Mitar Simić\",\"doi\":\"10.1016/j.sbsr.2024.100664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reliable measurement and acquisition of physiological parameters is among critical tasks in human health monitoring. While the presence of personalized measurement of Electrocardiography (ECG) and Electromyography (EMG) devices enables more frequent data collection, and consequently better health monitoring, it also leads to higher consumption of electrodes. On the other hand, commonly used Ag/AgCl electrodes are not free of charge or biodegradable. Therefore, their extensive use leads to higher costs and higher waste production. In this paper, we present an approach for the development of ECG/EMG electrodes that are based on biodegradable materials (two potato types). We performed successful integration of potato peel-based electrodes with the commercial device as well as with our in-house developed portable system. Measurements on 8 healthy volunteers revealed very small differences when heart rate, inter-beat-interval or normal-to-normal intervals are extracted from the ECG signal with potato peel-based and commercial Ag/AgCl electrodes. Our study demonstrates the feasibility of utilizing biodegradable potato peel-based electrodes for ECG and EMG measurements, showcasing their comparable performance to traditional Ag/AgCl electrodes in capturing physiological parameters. We introduced biodegradable electrodes as a viable and eco-friendly alternative for accurate ECG and EMG measurements, addressing the issues of electrode waste and cost associated with conventional electrodes.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000461/pdfft?md5=077d48f63e06460d9654f56ec1a36ecb&pid=1-s2.0-S2214180424000461-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

可靠地测量和获取生理参数是人体健康监测的关键任务之一。虽然心电图(ECG)和肌电图(EMG)设备的个性化测量可以更频繁地收集数据,从而更好地监测健康状况,但这也会导致电极消耗量增加。另一方面,常用的 Ag/AgCl 电极不带电荷,也不可生物降解。因此,它们的广泛使用会导致更高的成本和更多的废物产生。在本文中,我们介绍了一种基于可生物降解材料(两种马铃薯类型)的心电图/脑电图电极的开发方法。我们成功地将基于马铃薯皮的电极与商用设备以及我们自行开发的便携式系统集成。对 8 名健康志愿者进行的测量显示,使用马铃薯皮电极和商用银/氯化银电极从心电图信号中提取心率、搏动间期或正常至正常间期时,两者之间的差异非常小。我们的研究证明了利用基于马铃薯皮的可生物降解电极进行心电图和肌电图测量的可行性,并展示了它们在捕捉生理参数方面与传统的银/氯化银电极相当的性能。我们将生物可降解电极作为一种可行且环保的替代品,用于精确的心电图和肌电图测量,解决了与传统电极相关的电极废物和成本问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potato peels-based electrodes for recording ECG and EMG signals

Reliable measurement and acquisition of physiological parameters is among critical tasks in human health monitoring. While the presence of personalized measurement of Electrocardiography (ECG) and Electromyography (EMG) devices enables more frequent data collection, and consequently better health monitoring, it also leads to higher consumption of electrodes. On the other hand, commonly used Ag/AgCl electrodes are not free of charge or biodegradable. Therefore, their extensive use leads to higher costs and higher waste production. In this paper, we present an approach for the development of ECG/EMG electrodes that are based on biodegradable materials (two potato types). We performed successful integration of potato peel-based electrodes with the commercial device as well as with our in-house developed portable system. Measurements on 8 healthy volunteers revealed very small differences when heart rate, inter-beat-interval or normal-to-normal intervals are extracted from the ECG signal with potato peel-based and commercial Ag/AgCl electrodes. Our study demonstrates the feasibility of utilizing biodegradable potato peel-based electrodes for ECG and EMG measurements, showcasing their comparable performance to traditional Ag/AgCl electrodes in capturing physiological parameters. We introduced biodegradable electrodes as a viable and eco-friendly alternative for accurate ECG and EMG measurements, addressing the issues of electrode waste and cost associated with conventional electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
期刊最新文献
Biosynthesis, structural characterization and humidity sensing properties of cellulose/ZnO nanocomposite Graphene ribbons based THz toxic gas sensing A computer-generated plan to develop an intelligent biosensor for investigation of the inhibition of renin by aliskiren: A journey from inhibition to biosensing Gold nanowire-infused square-clad SPR-PCF biosensor for detection of various cancer cells Aptamer-enabled electrochemical bioplatform utilizing surface-modified g-C3N4/MoS2/PANI nanocomposite for detection of CA125 biomarker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1