设计用于增强二氧化碳电还原的反应驱动型活性配置

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-10 DOI:10.1016/j.nanoen.2024.109873
Shanyong Chen , Tao Luo , Xiaoqing Li , Kejun Chen , Qiyou Wang , Junwei Fu , Kang Liu , Chao Ma , Ying-Rui Lu , Hongmei Li , Kishan S. Menghrajani , Changxu Liu , Stefan A. Maier , Ting-Shan Chan , Min Liu
{"title":"设计用于增强二氧化碳电还原的反应驱动型活性配置","authors":"Shanyong Chen ,&nbsp;Tao Luo ,&nbsp;Xiaoqing Li ,&nbsp;Kejun Chen ,&nbsp;Qiyou Wang ,&nbsp;Junwei Fu ,&nbsp;Kang Liu ,&nbsp;Chao Ma ,&nbsp;Ying-Rui Lu ,&nbsp;Hongmei Li ,&nbsp;Kishan S. Menghrajani ,&nbsp;Changxu Liu ,&nbsp;Stefan A. Maier ,&nbsp;Ting-Shan Chan ,&nbsp;Min Liu","doi":"10.1016/j.nanoen.2024.109873","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-nitrogen-carbon single-atom catalysts (SACs) have emerged as promising candidates for electrocatalytic CO<sub>2</sub> reduction reaction. However, the perpendicular <span><math><msub><mrow><mi>d</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> orbital within planar metal site mainly interacts with *COOH, resulting in inferior CO<sub>2</sub> activation. Inspired by reaction-driven active configuration, here we propose to upshift nickel single-atom away from nitrogen-carbon substrate, prominently promoting the interaction between CO<sub>2</sub> and other <em>d</em> orbitals besides <span><math><msub><mrow><mi>d</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Theoretical and experimental analyses reveal that upshifting nickel site away substrate induces <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>xz</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>yz</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>d</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> to hybridize with CO<sub>2</sub>, expediting CO<sub>2</sub> conversion to *COOH. The planar and out-of-plane Ni-N sites are formed on carbon nanosheet (Ni<sub>1</sub>-N/C<sub>NS</sub>) and curved nanoparticle (Ni<sub>1</sub>-N/C<sub>NP</sub>), respectively, which is verified by X-ray absorption fine structure spectroscopy. Impressively, the Ni<sub>1</sub>-N/C<sub>NP</sub> presents CO Faradaic efficiency of 96.4 % at 500 mA cm<sup>−2</sup> and energy conversion efficiency of 79.8 % in flow cell, outperforming Ni<sub>1</sub>-N/C<sub>NS</sub> and most SACs. This work highlights the simulation of reaction-driven active sites for efficient electrocatalysis.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of reaction-driven active configuration for enhanced CO2 electroreduction\",\"authors\":\"Shanyong Chen ,&nbsp;Tao Luo ,&nbsp;Xiaoqing Li ,&nbsp;Kejun Chen ,&nbsp;Qiyou Wang ,&nbsp;Junwei Fu ,&nbsp;Kang Liu ,&nbsp;Chao Ma ,&nbsp;Ying-Rui Lu ,&nbsp;Hongmei Li ,&nbsp;Kishan S. Menghrajani ,&nbsp;Changxu Liu ,&nbsp;Stefan A. Maier ,&nbsp;Ting-Shan Chan ,&nbsp;Min Liu\",\"doi\":\"10.1016/j.nanoen.2024.109873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-nitrogen-carbon single-atom catalysts (SACs) have emerged as promising candidates for electrocatalytic CO<sub>2</sub> reduction reaction. However, the perpendicular <span><math><msub><mrow><mi>d</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> orbital within planar metal site mainly interacts with *COOH, resulting in inferior CO<sub>2</sub> activation. Inspired by reaction-driven active configuration, here we propose to upshift nickel single-atom away from nitrogen-carbon substrate, prominently promoting the interaction between CO<sub>2</sub> and other <em>d</em> orbitals besides <span><math><msub><mrow><mi>d</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Theoretical and experimental analyses reveal that upshifting nickel site away substrate induces <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>xz</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>yz</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>d</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> to hybridize with CO<sub>2</sub>, expediting CO<sub>2</sub> conversion to *COOH. The planar and out-of-plane Ni-N sites are formed on carbon nanosheet (Ni<sub>1</sub>-N/C<sub>NS</sub>) and curved nanoparticle (Ni<sub>1</sub>-N/C<sub>NP</sub>), respectively, which is verified by X-ray absorption fine structure spectroscopy. Impressively, the Ni<sub>1</sub>-N/C<sub>NP</sub> presents CO Faradaic efficiency of 96.4 % at 500 mA cm<sup>−2</sup> and energy conversion efficiency of 79.8 % in flow cell, outperforming Ni<sub>1</sub>-N/C<sub>NS</sub> and most SACs. This work highlights the simulation of reaction-driven active sites for efficient electrocatalysis.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006219\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006219","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属-氮-碳单原子催化剂(SAC)已成为电催化二氧化碳还原反应的理想候选催化剂。然而,平面金属位点内垂直的 dz2 轨道主要与 *COOH 相互作用,导致 CO2 活化效果不佳。受反应驱动活性构型的启发,我们在此提出将镍单原子从氮碳基质上移,从而显著促进 CO2 与 dz2 以外的其他 d 轨道之间的相互作用。理论和实验分析表明,镍单原子远离基质会诱导 dxz、dyz 和 dz2 与 CO2 发生杂化,从而加速 CO2 向 *COOH 的转化。碳纳米片(Ni1-N/CNS)和弯曲纳米粒子(Ni1-N/CNP)上分别形成了平面和平面外的镍-N位点,X射线吸收精细结构光谱验证了这一点。令人印象深刻的是,Ni1-N/CNP 在 500 mA cm-2 时的 CO 法拉第效率为 96.4%,在流动池中的能量转换效率为 79.8%,优于 Ni1-N/CNS 和大多数 SAC。这项工作强调了模拟反应驱动活性位点以实现高效电催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of reaction-driven active configuration for enhanced CO2 electroreduction

Metal-nitrogen-carbon single-atom catalysts (SACs) have emerged as promising candidates for electrocatalytic CO2 reduction reaction. However, the perpendicular dz2 orbital within planar metal site mainly interacts with *COOH, resulting in inferior CO2 activation. Inspired by reaction-driven active configuration, here we propose to upshift nickel single-atom away from nitrogen-carbon substrate, prominently promoting the interaction between CO2 and other d orbitals besides dz2. Theoretical and experimental analyses reveal that upshifting nickel site away substrate induces dxz, dyz, and dz2 to hybridize with CO2, expediting CO2 conversion to *COOH. The planar and out-of-plane Ni-N sites are formed on carbon nanosheet (Ni1-N/CNS) and curved nanoparticle (Ni1-N/CNP), respectively, which is verified by X-ray absorption fine structure spectroscopy. Impressively, the Ni1-N/CNP presents CO Faradaic efficiency of 96.4 % at 500 mA cm−2 and energy conversion efficiency of 79.8 % in flow cell, outperforming Ni1-N/CNS and most SACs. This work highlights the simulation of reaction-driven active sites for efficient electrocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1