与自然池塘相比,亚热带雨水池塘更经常地净固氮

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2024-06-13 DOI:10.1007/s10533-024-01153-z
Audrey H. Goeckner, Ashley R. Smyth, Meredith A. Holgerson, Alexander J. Reisinger
{"title":"与自然池塘相比,亚热带雨水池塘更经常地净固氮","authors":"Audrey H. Goeckner,&nbsp;Ashley R. Smyth,&nbsp;Meredith A. Holgerson,&nbsp;Alexander J. Reisinger","doi":"10.1007/s10533-024-01153-z","DOIUrl":null,"url":null,"abstract":"<div><p>Urban stormwater ponds (SWPs) are engineered ecosystems designed to prevent flooding and protect downstream ecosystems by retaining nutrients associated with stormwater runoff, including nitrogen (N). Despite these expectations, multiple studies have found that SWPs have low N removal efficiencies and can be sources of N to downstream ecosystems. To understand mechanisms controlling the fate of N in SWPs, we quantified dinitrogen (N<sub>2</sub>) gas saturation to characterize net N<sub>2</sub> exchange as either net denitrification or net N-fixation. We assessed temporal and spatial patterns of N<sub>2</sub> dynamics in fifteen SWPs and six naturally occurring ponds in undisturbed watersheds (Florida, USA) by sampling in two seasons (dry and wet) and from multiple depths of the water column. Samples from SWPs were equally likely to exhibit N<sub>2</sub> supersaturation (net denitrification; 50%) or undersaturation (net N-fixation; 50%). In contrast, the majority (82%) of samples from natural ponds were supersaturated with N<sub>2</sub>, indicating net denitrification. The mean SWP air–water N<sub>2</sub> flux was − 1.7 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup> (range − 500 to 433 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>), which was lower than clear (40 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range − 68 to 74 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) and humic (202 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range 41 to 407 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) natural ponds despite considerably higher variation in SWPs. These results indicate that SWPs may have low N removal efficiencies in part due to N-fixation adding new N to the system. Overall, this study shows that SWPs are less effective than natural ponds at removing reactive N from the environment, potentially impacting downstream water quality.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"1007 - 1024"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01153-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Subtropical stormwater ponds are more frequently net nitrogen fixing compared to natural ponds\",\"authors\":\"Audrey H. Goeckner,&nbsp;Ashley R. Smyth,&nbsp;Meredith A. Holgerson,&nbsp;Alexander J. Reisinger\",\"doi\":\"10.1007/s10533-024-01153-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban stormwater ponds (SWPs) are engineered ecosystems designed to prevent flooding and protect downstream ecosystems by retaining nutrients associated with stormwater runoff, including nitrogen (N). Despite these expectations, multiple studies have found that SWPs have low N removal efficiencies and can be sources of N to downstream ecosystems. To understand mechanisms controlling the fate of N in SWPs, we quantified dinitrogen (N<sub>2</sub>) gas saturation to characterize net N<sub>2</sub> exchange as either net denitrification or net N-fixation. We assessed temporal and spatial patterns of N<sub>2</sub> dynamics in fifteen SWPs and six naturally occurring ponds in undisturbed watersheds (Florida, USA) by sampling in two seasons (dry and wet) and from multiple depths of the water column. Samples from SWPs were equally likely to exhibit N<sub>2</sub> supersaturation (net denitrification; 50%) or undersaturation (net N-fixation; 50%). In contrast, the majority (82%) of samples from natural ponds were supersaturated with N<sub>2</sub>, indicating net denitrification. The mean SWP air–water N<sub>2</sub> flux was − 1.7 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup> (range − 500 to 433 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>), which was lower than clear (40 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range − 68 to 74 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) and humic (202 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range 41 to 407 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) natural ponds despite considerably higher variation in SWPs. These results indicate that SWPs may have low N removal efficiencies in part due to N-fixation adding new N to the system. Overall, this study shows that SWPs are less effective than natural ponds at removing reactive N from the environment, potentially impacting downstream water quality.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"167 8\",\"pages\":\"1007 - 1024\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-024-01153-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-024-01153-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01153-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市雨水池塘(SWPs)是一种工程生态系统,旨在通过截留与雨水径流相关的营养物质(包括氮)来防止洪水并保护下游生态系统。尽管人们有这样的期望,但多项研究发现,蓄水池对氮的去除效率很低,可能成为下游生态系统的氮源。为了了解控制降水自动处理系统中氮的归宿的机制,我们对二氮(N2)气体饱和度进行了量化,以确定净 N2 交换的特征是净反硝化还是净固氮。我们在两个季节(旱季和雨季)并从水体的多个深度取样,评估了未受干扰流域(美国佛罗里达州)中 15 个 SWPs 和 6 个天然池塘的 N2 动态时空模式。来自 SWP 的样本同样有可能出现 N2 过饱和(净反硝化;50%)或欠饱和(净固氮;50%)现象。相比之下,来自天然池塘的大多数样本(82%)都出现了 N2 过饱和状态,表明出现了净反硝化作用。平均 SWP 空气-水 N2 通量为 - 1.7 μg N2-N m-2 h-1(范围 - 500 至 433 μg N2-N m-2 h-1),低于清澈池塘(40 μg N2-N m-2 h-1;范围 - 68 至 74 μg N2-N m-2 h-1)和腐殖质池塘(202 μg N2-N m-2 h-1;范围 41 至 407 μg N2-N m-2 h-1),尽管 SWP 的变化要大得多。这些结果表明,部分由于固氮作用给系统增加了新的氮,全合成池的氮去除效率可能较低。总之,这项研究表明,在从环境中去除活性氮方面,全合成池的效率低于天然池塘,可能会影响下游水质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subtropical stormwater ponds are more frequently net nitrogen fixing compared to natural ponds

Urban stormwater ponds (SWPs) are engineered ecosystems designed to prevent flooding and protect downstream ecosystems by retaining nutrients associated with stormwater runoff, including nitrogen (N). Despite these expectations, multiple studies have found that SWPs have low N removal efficiencies and can be sources of N to downstream ecosystems. To understand mechanisms controlling the fate of N in SWPs, we quantified dinitrogen (N2) gas saturation to characterize net N2 exchange as either net denitrification or net N-fixation. We assessed temporal and spatial patterns of N2 dynamics in fifteen SWPs and six naturally occurring ponds in undisturbed watersheds (Florida, USA) by sampling in two seasons (dry and wet) and from multiple depths of the water column. Samples from SWPs were equally likely to exhibit N2 supersaturation (net denitrification; 50%) or undersaturation (net N-fixation; 50%). In contrast, the majority (82%) of samples from natural ponds were supersaturated with N2, indicating net denitrification. The mean SWP air–water N2 flux was − 1.7 μg N2-N m−2 h−1 (range − 500 to 433 μg N2-N m−2 h−1), which was lower than clear (40 μg N2-N m−2 h−1; range − 68 to 74 μg N2-N m−2 h−1) and humic (202 μg N2-N m−2 h−1; range 41 to 407 μg N2-N m−2 h−1) natural ponds despite considerably higher variation in SWPs. These results indicate that SWPs may have low N removal efficiencies in part due to N-fixation adding new N to the system. Overall, this study shows that SWPs are less effective than natural ponds at removing reactive N from the environment, potentially impacting downstream water quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Cycling of dissolved organic nutrients and indications for nutrient limitations in contrasting Amazon rainforest ecosystems Regional differences in soil stable isotopes and vibrational features at depth in three California grasslands High spatial variability in wetland methane fluxes is tied to vegetation patch types Calcium sorption and isotope fractionation in Bacillus subtilis and Pseudomonas aeruginosa Forest types control the contribution of litter and roots to labile and persistent soil organic carbon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1