Wolfgang D. Maier, D. D. Muir, S-. J. Barnes, K. Szilas
{"title":"格陵兰岛西部约 3.0 Ga 的 Maniitsoq 侵入带中硫化镍矿化的成岩作用格陵兰西部 3.0 Ga Maniitsoq 侵入带中的镍硫化物成矿作用","authors":"Wolfgang D. Maier, D. D. Muir, S-. J. Barnes, K. Szilas","doi":"10.1007/s00126-024-01282-3","DOIUrl":null,"url":null,"abstract":"<p>The ca. 3.0 Ga Ni sulfide mineralisation at Maniitsoq, SW Greenland, is hosted by a cluster of relatively small, irregularly shaped mafic-ultramafic intrusions, typically 10s of m to a few km across, that are lodged within broadly coeval gneiss. Many of the intrusions are fault bounded and fragmented so that their original sizes remain unknown. The sulfides form disseminations and sulfide matrix breccia veins displaying sharp contacts to the host intrusives. The mineralisation has relatively high Ni/Cu, with 4–10% Ni and 1–2% Cu. Correlations between Ni and Cu with sulfide content are strong, consistent with a magmatic origin of the mineralisation. PGE contents are mostly below 0.5 ppm, and Cu/Pd is typically above primitive mantle levels, interpreted to reflect equilibration of the parent magma with segregating sulfide melt prior to final magma emplacement. Sulfide segregation was likely triggered by assimilation of crustal sulfur, as suggested by whole rock S/Se ratios of 7000–9000. The sulfide melt underwent extensive fractionation after final emplacement, caused by downward percolation of Cu-rich sulfide melt through incompletely solidified cumulates. We suggest that the exposed Maniitsoq intrusions represent the Ni-rich upper portions of magma conduits implying that there is potential for Cu-rich sulfides in unexposed deeper portions of the belt.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"24 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrogenesis of Ni-sulfide mineralisation in the ca. 3.0 Ga Maniitsoq intrusive belt, western Greenland\",\"authors\":\"Wolfgang D. Maier, D. D. Muir, S-. J. Barnes, K. Szilas\",\"doi\":\"10.1007/s00126-024-01282-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ca. 3.0 Ga Ni sulfide mineralisation at Maniitsoq, SW Greenland, is hosted by a cluster of relatively small, irregularly shaped mafic-ultramafic intrusions, typically 10s of m to a few km across, that are lodged within broadly coeval gneiss. Many of the intrusions are fault bounded and fragmented so that their original sizes remain unknown. The sulfides form disseminations and sulfide matrix breccia veins displaying sharp contacts to the host intrusives. The mineralisation has relatively high Ni/Cu, with 4–10% Ni and 1–2% Cu. Correlations between Ni and Cu with sulfide content are strong, consistent with a magmatic origin of the mineralisation. PGE contents are mostly below 0.5 ppm, and Cu/Pd is typically above primitive mantle levels, interpreted to reflect equilibration of the parent magma with segregating sulfide melt prior to final magma emplacement. Sulfide segregation was likely triggered by assimilation of crustal sulfur, as suggested by whole rock S/Se ratios of 7000–9000. The sulfide melt underwent extensive fractionation after final emplacement, caused by downward percolation of Cu-rich sulfide melt through incompletely solidified cumulates. We suggest that the exposed Maniitsoq intrusions represent the Ni-rich upper portions of magma conduits implying that there is potential for Cu-rich sulfides in unexposed deeper portions of the belt.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-024-01282-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01282-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Petrogenesis of Ni-sulfide mineralisation in the ca. 3.0 Ga Maniitsoq intrusive belt, western Greenland
The ca. 3.0 Ga Ni sulfide mineralisation at Maniitsoq, SW Greenland, is hosted by a cluster of relatively small, irregularly shaped mafic-ultramafic intrusions, typically 10s of m to a few km across, that are lodged within broadly coeval gneiss. Many of the intrusions are fault bounded and fragmented so that their original sizes remain unknown. The sulfides form disseminations and sulfide matrix breccia veins displaying sharp contacts to the host intrusives. The mineralisation has relatively high Ni/Cu, with 4–10% Ni and 1–2% Cu. Correlations between Ni and Cu with sulfide content are strong, consistent with a magmatic origin of the mineralisation. PGE contents are mostly below 0.5 ppm, and Cu/Pd is typically above primitive mantle levels, interpreted to reflect equilibration of the parent magma with segregating sulfide melt prior to final magma emplacement. Sulfide segregation was likely triggered by assimilation of crustal sulfur, as suggested by whole rock S/Se ratios of 7000–9000. The sulfide melt underwent extensive fractionation after final emplacement, caused by downward percolation of Cu-rich sulfide melt through incompletely solidified cumulates. We suggest that the exposed Maniitsoq intrusions represent the Ni-rich upper portions of magma conduits implying that there is potential for Cu-rich sulfides in unexposed deeper portions of the belt.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.