{"title":"预测 COVID-19 的传播趋势:基于日常病例、死亡病例和输入病例的可解释机器学习方法。","authors":"Hyeonjeong Ahn, Hyojung Lee","doi":"10.3934/mbe.2024270","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 is caused by the SARS-CoV-2 virus, which has produced variants and increasing concerns about a potential resurgence since the pandemic outbreak in 2019. Predicting infectious disease outbreaks is crucial for effective prevention and control. This study aims to predict the transmission patterns of COVID-19 using machine learning, such as support vector machine, random forest, and XGBoost, using confirmed cases, death cases, and imported cases, respectively. The study categorizes the transmission trends into the three groups: L0 (decrease), L1 (maintain), and L2 (increase). We develop the risk index function to quantify changes in the transmission trends, which is applied to the classification of machine learning. A high accuracy is achieved when estimating the transmission trends for the confirmed cases (91.5-95.5%), death cases (85.6-91.8%), and imported cases (77.7-89.4%). Notably, the confirmed cases exhibit a higher level of accuracy compared to the data on the deaths and imported cases. L2 predictions outperformed L0 and L1 in all cases. Predicting L2 is important because it can lead to new outbreaks. Thus, this robust L2 prediction is crucial for the timely implementation of control policies for the management of transmission dynamics.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 5","pages":"6150-6166"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the transmission trends of COVID-19: an interpretable machine learning approach based on daily, death, and imported cases.\",\"authors\":\"Hyeonjeong Ahn, Hyojung Lee\",\"doi\":\"10.3934/mbe.2024270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 is caused by the SARS-CoV-2 virus, which has produced variants and increasing concerns about a potential resurgence since the pandemic outbreak in 2019. Predicting infectious disease outbreaks is crucial for effective prevention and control. This study aims to predict the transmission patterns of COVID-19 using machine learning, such as support vector machine, random forest, and XGBoost, using confirmed cases, death cases, and imported cases, respectively. The study categorizes the transmission trends into the three groups: L0 (decrease), L1 (maintain), and L2 (increase). We develop the risk index function to quantify changes in the transmission trends, which is applied to the classification of machine learning. A high accuracy is achieved when estimating the transmission trends for the confirmed cases (91.5-95.5%), death cases (85.6-91.8%), and imported cases (77.7-89.4%). Notably, the confirmed cases exhibit a higher level of accuracy compared to the data on the deaths and imported cases. L2 predictions outperformed L0 and L1 in all cases. Predicting L2 is important because it can lead to new outbreaks. Thus, this robust L2 prediction is crucial for the timely implementation of control policies for the management of transmission dynamics.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 5\",\"pages\":\"6150-6166\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024270\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024270","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Predicting the transmission trends of COVID-19: an interpretable machine learning approach based on daily, death, and imported cases.
COVID-19 is caused by the SARS-CoV-2 virus, which has produced variants and increasing concerns about a potential resurgence since the pandemic outbreak in 2019. Predicting infectious disease outbreaks is crucial for effective prevention and control. This study aims to predict the transmission patterns of COVID-19 using machine learning, such as support vector machine, random forest, and XGBoost, using confirmed cases, death cases, and imported cases, respectively. The study categorizes the transmission trends into the three groups: L0 (decrease), L1 (maintain), and L2 (increase). We develop the risk index function to quantify changes in the transmission trends, which is applied to the classification of machine learning. A high accuracy is achieved when estimating the transmission trends for the confirmed cases (91.5-95.5%), death cases (85.6-91.8%), and imported cases (77.7-89.4%). Notably, the confirmed cases exhibit a higher level of accuracy compared to the data on the deaths and imported cases. L2 predictions outperformed L0 and L1 in all cases. Predicting L2 is important because it can lead to new outbreaks. Thus, this robust L2 prediction is crucial for the timely implementation of control policies for the management of transmission dynamics.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).