免疫细胞在抗溶瘤病毒疗法中的作用。

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-05-15 DOI:10.3934/mbe.2024261
Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang
{"title":"免疫细胞在抗溶瘤病毒疗法中的作用。","authors":"Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang","doi":"10.3934/mbe.2024261","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 5","pages":"5900-5946"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of immune cells in resistance to oncolytic viral therapy.\",\"authors\":\"Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang\",\"doi\":\"10.3934/mbe.2024261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 5\",\"pages\":\"5900-5946\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024261\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024261","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

抗药性是癌症治疗面临的一大挑战,肿瘤病毒治疗也会遇到病毒抗药性问题。在这项研究中,我们引入了确定性微分方程模型来探讨抗药性对溶瘤病毒治疗的影响。具体来说,我们将肿瘤细胞分为对溶瘤病毒耐药、敏感和感染三种类型进行分析。免疫细胞既能消灭肿瘤细胞,也能消灭病毒。我们的研究表明,由于免疫细胞的增殖率超过其死亡率,因此在肿瘤与病毒的相互作用中引入免疫细胞,可防止所有肿瘤细胞在未从抗药性转化为敏感性的情况下产生抗药性。当免疫细胞招募率足够高时,免疫细胞的加入会导致额外的无病毒平衡。这种无病毒平衡状态下的总肿瘤负荷小于无病毒和无免疫平衡状态下的总肿瘤负荷。因此,在免疫力足够强的条件下,免疫细胞能够减少肿瘤负荷。数值研究表明,病毒传播率和与免疫反应相关的参数对治疗效果有显著影响。然而,单靠单一疗法不足以根除肿瘤细胞,因此有必要采用其他疗法。进一步的数值模拟显示,与嵌合抗原受体(CAR T 细胞)疗法相结合可以提高治疗的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of immune cells in resistance to oncolytic viral therapy.

Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Multiscale modelling of hepatitis B virus at cell level of organization. Global sensitivity analysis and uncertainty quantification for a mathematical model of dry anaerobic digestion in plug-flow reactors. Depression-induced changes in directed functional brain networks: A source-space resting-state EEG study. Mathematical modeling of infectious diseases and the impact of vaccination strategies. Retraction notice to "A novel architecture design for artificial intelligence-assisted culture conservation management system" [Mathematical Biosciences and Engineering 20(6) (2023) 9693-9711].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1