Jiuxin Qu, Wanfei Liu, Shuyan Chen, Chi Wu, Wenjie Lai, Rui Qin, Feidi Ye, Yuanchun Li, Liang Fu, Guofang Deng, Lei Liu, Qiang Lin, Peng Cui
{"title":"深度扩增子测序揭示了临床样本对结核分枝杆菌培养的选择。","authors":"Jiuxin Qu, Wanfei Liu, Shuyan Chen, Chi Wu, Wenjie Lai, Rui Qin, Feidi Ye, Yuanchun Li, Liang Fu, Guofang Deng, Lei Liu, Qiang Lin, Peng Cui","doi":"10.1093/gpbjnl/qzae046","DOIUrl":null,"url":null,"abstract":"<p><p>The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clone/subclone selection. We developed a targeted deep amplification sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations associated with 20 anti-tuberculosis drugs with an initial amount of 4 pg DNA and reduced clinical testing time from 20 days to two days. A prospective study was conducted using 115 clinical specimens mainly with Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay positive to evaluate drug-resistant mutation detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS showed better sensitivity (93.03% vs. 92.16%), specificity (96.10% vs. 95.02%), and accuracy (91.33% vs. 90.62%) than Mykrobe software using WGS. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancy in Mycobacterium tuberculosis before and after culture.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Amplicon Sequencing Reveals Culture Selection of Mycobacterium Tuberculosis by Clinical Samples.\",\"authors\":\"Jiuxin Qu, Wanfei Liu, Shuyan Chen, Chi Wu, Wenjie Lai, Rui Qin, Feidi Ye, Yuanchun Li, Liang Fu, Guofang Deng, Lei Liu, Qiang Lin, Peng Cui\",\"doi\":\"10.1093/gpbjnl/qzae046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clone/subclone selection. We developed a targeted deep amplification sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations associated with 20 anti-tuberculosis drugs with an initial amount of 4 pg DNA and reduced clinical testing time from 20 days to two days. A prospective study was conducted using 115 clinical specimens mainly with Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay positive to evaluate drug-resistant mutation detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS showed better sensitivity (93.03% vs. 92.16%), specificity (96.10% vs. 95.02%), and accuracy (91.33% vs. 90.62%) than Mykrobe software using WGS. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancy in Mycobacterium tuberculosis before and after culture.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
常用的药敏试验(DST)依赖于细菌培养,面临着周转时间长和克隆/亚克隆选择等缺点。我们开发了一种直接应用于临床标本的靶向深度扩增测序(DAS)方法。在这一 DAS 面板中,我们检测了与 20 种抗结核药物相关的 941 个耐药突变,初始 DNA 量为 4 pg,并将临床检测时间从 20 天缩短至两天。一项前瞻性研究使用了 115 份临床标本,主要是 Xpert® 结核分枝杆菌/利福平(Xpert MTB/RIF)检测呈阳性的标本,以评估耐药突变的检测情况。DAS在无培养标本上进行,而依赖培养的分离株则用于表型DST、DAS和全基因组测序(WGS)。在硅分子 DST 方面,我们基于 DAS 面板得出的结果与已发表的三篇基于 WGS 的报告具有相似的准确性。对于 82 个分离物,应用 DAS 的灵敏度(93.03% 对 92.16%)、特异性(96.10% 对 95.02%)和准确性(91.33% 对 90.62%)均优于使用 WGS 的 Mykrobe 软件。与依赖培养基的 WGS 相比,无培养基 DAS 能提供群体水平上序列变异的全貌,详细展示细菌培养引起的增减变异。我们的研究系统地验证了 DAS 在临床应用中的优势,并全面说明了培养前后结核分枝杆菌的差异。
Deep Amplicon Sequencing Reveals Culture Selection of Mycobacterium Tuberculosis by Clinical Samples.
The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clone/subclone selection. We developed a targeted deep amplification sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations associated with 20 anti-tuberculosis drugs with an initial amount of 4 pg DNA and reduced clinical testing time from 20 days to two days. A prospective study was conducted using 115 clinical specimens mainly with Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay positive to evaluate drug-resistant mutation detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS showed better sensitivity (93.03% vs. 92.16%), specificity (96.10% vs. 95.02%), and accuracy (91.33% vs. 90.62%) than Mykrobe software using WGS. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancy in Mycobacterium tuberculosis before and after culture.