Tom Blümel , Rabea Klara Sahr , Alexander Krimmer , Andreas Bardenhagen
{"title":"考虑纤维取向分布的单向玻璃纤维增强聚合物纵向抗压强度的研究与计算","authors":"Tom Blümel , Rabea Klara Sahr , Alexander Krimmer , Andreas Bardenhagen","doi":"10.1016/j.jcomc.2024.100480","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, undulations and their influence on the longitudinal compressive strength of a unidirectional glass fiber reinforced polymer (GFRP) composite are investigated theoretically and experimentally. The objective of this research is to explore the failure mechanisms in FRP and to characterize the mechanical properties of FRP as a function of fiber orientation. For this purpose, a multiscale material model is developed that considers a stochastic fiber orientation distribution (FOD) and models matrix fracture-initiated failure. The relationship between compressive strength and undulation is investigated experimentally on standardized specimens made of unidirectional GFRP. The fiber orientations are measured using X-ray computed tomography and ImageJ image analysis, resulting in a binormal distribution of fiber orientations in the series of samples tested. To examine the failure process in detail, the compression tests are simulated using finite element analysis (FEA). Both the FEA results and the measured compressive strengths confirm the model assumption of matrix fracture-initiated failure under longitudinal compressive loading. The presented analytical model realistically represents the correlation of compressive strength with the FOD.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100480"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000501/pdfft?md5=7ad8adac962cc4499aac9eba1309c382&pid=1-s2.0-S2666682024000501-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation and calculation of the longitudinal compressive strength of unidirectional glass fiber reinforced polymer considering the fiber orientation distribution\",\"authors\":\"Tom Blümel , Rabea Klara Sahr , Alexander Krimmer , Andreas Bardenhagen\",\"doi\":\"10.1016/j.jcomc.2024.100480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, undulations and their influence on the longitudinal compressive strength of a unidirectional glass fiber reinforced polymer (GFRP) composite are investigated theoretically and experimentally. The objective of this research is to explore the failure mechanisms in FRP and to characterize the mechanical properties of FRP as a function of fiber orientation. For this purpose, a multiscale material model is developed that considers a stochastic fiber orientation distribution (FOD) and models matrix fracture-initiated failure. The relationship between compressive strength and undulation is investigated experimentally on standardized specimens made of unidirectional GFRP. The fiber orientations are measured using X-ray computed tomography and ImageJ image analysis, resulting in a binormal distribution of fiber orientations in the series of samples tested. To examine the failure process in detail, the compression tests are simulated using finite element analysis (FEA). Both the FEA results and the measured compressive strengths confirm the model assumption of matrix fracture-initiated failure under longitudinal compressive loading. The presented analytical model realistically represents the correlation of compressive strength with the FOD.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"14 \",\"pages\":\"Article 100480\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000501/pdfft?md5=7ad8adac962cc4499aac9eba1309c382&pid=1-s2.0-S2666682024000501-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过理论和实验研究了单向玻璃纤维增强聚合物(GFRP)复合材料的起伏及其对纵向抗压强度的影响。这项研究的目的是探索玻璃纤维增强塑料的失效机理,并描述玻璃纤维增强塑料的机械性能与纤维取向的函数关系。为此,建立了一个多尺度材料模型,该模型考虑了随机纤维取向分布 (FOD),并对基体断裂引发的失效进行了建模。通过对单向 GFRP 标准试样进行实验,研究了抗压强度与起伏之间的关系。使用 X 射线计算机断层扫描和 ImageJ 图像分析法测量了纤维取向,结果在一系列测试样品中得出了纤维取向的二正态分布。为了详细研究破坏过程,使用有限元分析(FEA)对压缩试验进行了模拟。有限元分析结果和测得的压缩强度都证实了在纵向压缩加载下基体断裂引发破坏的模型假设。所提出的分析模型真实地反映了抗压强度与 FOD 的相关性。
Investigation and calculation of the longitudinal compressive strength of unidirectional glass fiber reinforced polymer considering the fiber orientation distribution
In this study, undulations and their influence on the longitudinal compressive strength of a unidirectional glass fiber reinforced polymer (GFRP) composite are investigated theoretically and experimentally. The objective of this research is to explore the failure mechanisms in FRP and to characterize the mechanical properties of FRP as a function of fiber orientation. For this purpose, a multiscale material model is developed that considers a stochastic fiber orientation distribution (FOD) and models matrix fracture-initiated failure. The relationship between compressive strength and undulation is investigated experimentally on standardized specimens made of unidirectional GFRP. The fiber orientations are measured using X-ray computed tomography and ImageJ image analysis, resulting in a binormal distribution of fiber orientations in the series of samples tested. To examine the failure process in detail, the compression tests are simulated using finite element analysis (FEA). Both the FEA results and the measured compressive strengths confirm the model assumption of matrix fracture-initiated failure under longitudinal compressive loading. The presented analytical model realistically represents the correlation of compressive strength with the FOD.