通过受控构建次级电子通路实现基于生物聚合物聚(乳酸)的多功能三电纳米发电机

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-10 DOI:10.1016/j.nanoen.2024.109877
Tairong Kuang , Jingbing Zhang , Guang-Ming Huang , Tong Liu , Zhao-Xia Huang
{"title":"通过受控构建次级电子通路实现基于生物聚合物聚(乳酸)的多功能三电纳米发电机","authors":"Tairong Kuang ,&nbsp;Jingbing Zhang ,&nbsp;Guang-Ming Huang ,&nbsp;Tong Liu ,&nbsp;Zhao-Xia Huang","doi":"10.1016/j.nanoen.2024.109877","DOIUrl":null,"url":null,"abstract":"<div><p>Seeking sustainable energy solutions for bioelectronic devices, high-performance, multifunctional biopolymer-based triboelectric nanogenerators (TENGs) are proving to be essential for biomedical applications. This study presents an innovative fabrication method for establishing secondary electron transport paths, resulting in biopolymer-based nanocomposites (poly (lactic acid) (PLA)/carbon nanotube (CNT)@expanded graphite (EG)) with inherent electron pathways. By integrating conductive biopolymer nanocomposites with polytetrafluoroethylene (PTFE) films, we developed a contact-separation mode TENG (CS-TENG) that demonstrates outstanding energy-harvesting efficiency. The CS-TENG displays an impressive charge density of 280 μC/m<sup>2</sup>, accompanied by an open circuit voltage (V<sub>oc</sub>) of 100.5 V and short circuit current density (I<sub>sc</sub>) values of 47.25 mA/m<sup>2</sup>. Moreover, the essential conductive network guarantees the CS-TENG’s stability across different humidity levels and serves as a moisture barrier. In addition to energy harvesting, the fabricated biopolymer nanocomposite films exhibit effective electromagnetic interference (EMI) shielding and Joule heating capabilities, rendering the CS-TENG suitable for use in diverse application scenarios. Our results emphasize the crucial role of conductive network architecture in creating high-performance biopolymer PLA-based TENGs. The innovative fabrication method and our CS-TENG's capabilities reveal the significant potential of biopolymer-based composites to transform energy harvesting, thermal management, and EMI shielding in bioelectronics.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional biopolymer poly (lactic acid)-based triboelectric nanogenerator via controlled construction of secondary electron path\",\"authors\":\"Tairong Kuang ,&nbsp;Jingbing Zhang ,&nbsp;Guang-Ming Huang ,&nbsp;Tong Liu ,&nbsp;Zhao-Xia Huang\",\"doi\":\"10.1016/j.nanoen.2024.109877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seeking sustainable energy solutions for bioelectronic devices, high-performance, multifunctional biopolymer-based triboelectric nanogenerators (TENGs) are proving to be essential for biomedical applications. This study presents an innovative fabrication method for establishing secondary electron transport paths, resulting in biopolymer-based nanocomposites (poly (lactic acid) (PLA)/carbon nanotube (CNT)@expanded graphite (EG)) with inherent electron pathways. By integrating conductive biopolymer nanocomposites with polytetrafluoroethylene (PTFE) films, we developed a contact-separation mode TENG (CS-TENG) that demonstrates outstanding energy-harvesting efficiency. The CS-TENG displays an impressive charge density of 280 μC/m<sup>2</sup>, accompanied by an open circuit voltage (V<sub>oc</sub>) of 100.5 V and short circuit current density (I<sub>sc</sub>) values of 47.25 mA/m<sup>2</sup>. Moreover, the essential conductive network guarantees the CS-TENG’s stability across different humidity levels and serves as a moisture barrier. In addition to energy harvesting, the fabricated biopolymer nanocomposite films exhibit effective electromagnetic interference (EMI) shielding and Joule heating capabilities, rendering the CS-TENG suitable for use in diverse application scenarios. Our results emphasize the crucial role of conductive network architecture in creating high-performance biopolymer PLA-based TENGs. The innovative fabrication method and our CS-TENG's capabilities reveal the significant potential of biopolymer-based composites to transform energy harvesting, thermal management, and EMI shielding in bioelectronics.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006256\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为寻求生物电子设备的可持续能源解决方案,基于生物聚合物的高性能、多功能三电纳米发电机(TENGs)被证明对生物医学应用至关重要。本研究提出了一种创新的制造方法,用于建立次级电子传输路径,从而制造出具有固有电子通路的生物聚合物基纳米复合材料(聚乳酸/碳纳米管/膨胀石墨)。通过将导电生物聚合物纳米复合材料与聚四氟乙烯(PTFE)薄膜整合在一起,我们开发出了一种接触分离模式 TENG(CS-TENG),它具有出色的能量收集效率。CS-TENG 的电荷密度高达 280 μC/m2,开路电压 (Voc) 为 100.5 V,短路电流密度 (Isc) 为 47.25 mA/m2。此外,重要的导电网络保证了 CS-TENG 在不同湿度下的稳定性,并起到防潮作用。除了能量收集之外,制备的生物聚合物纳米复合薄膜还具有有效的电磁干扰(EMI)屏蔽和焦耳热功能,使 CS-TENG 适合用于各种应用场合。我们的研究结果强调了导电网络结构在创建高性能生物聚合物聚乳酸基 TENG 中的关键作用。创新的制造方法和 CS-TENG 的功能揭示了基于生物聚合物的复合材料在改变生物电子学中的能量采集、热管理和电磁干扰屏蔽方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional biopolymer poly (lactic acid)-based triboelectric nanogenerator via controlled construction of secondary electron path

Seeking sustainable energy solutions for bioelectronic devices, high-performance, multifunctional biopolymer-based triboelectric nanogenerators (TENGs) are proving to be essential for biomedical applications. This study presents an innovative fabrication method for establishing secondary electron transport paths, resulting in biopolymer-based nanocomposites (poly (lactic acid) (PLA)/carbon nanotube (CNT)@expanded graphite (EG)) with inherent electron pathways. By integrating conductive biopolymer nanocomposites with polytetrafluoroethylene (PTFE) films, we developed a contact-separation mode TENG (CS-TENG) that demonstrates outstanding energy-harvesting efficiency. The CS-TENG displays an impressive charge density of 280 μC/m2, accompanied by an open circuit voltage (Voc) of 100.5 V and short circuit current density (Isc) values of 47.25 mA/m2. Moreover, the essential conductive network guarantees the CS-TENG’s stability across different humidity levels and serves as a moisture barrier. In addition to energy harvesting, the fabricated biopolymer nanocomposite films exhibit effective electromagnetic interference (EMI) shielding and Joule heating capabilities, rendering the CS-TENG suitable for use in diverse application scenarios. Our results emphasize the crucial role of conductive network architecture in creating high-performance biopolymer PLA-based TENGs. The innovative fabrication method and our CS-TENG's capabilities reveal the significant potential of biopolymer-based composites to transform energy harvesting, thermal management, and EMI shielding in bioelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1