评估并最大限度地减少附加干扰对人体呼吸系统阻抗估算的影响

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-05-29 DOI:10.1016/j.ifacsc.2024.100264
Antoine Marchal , Andy Keymolen , Gerd Vandersteen , Frank Heck , Ben van den Elshout , John Lataire
{"title":"评估并最大限度地减少附加干扰对人体呼吸系统阻抗估算的影响","authors":"Antoine Marchal ,&nbsp;Andy Keymolen ,&nbsp;Gerd Vandersteen ,&nbsp;Frank Heck ,&nbsp;Ben van den Elshout ,&nbsp;John Lataire","doi":"10.1016/j.ifacsc.2024.100264","DOIUrl":null,"url":null,"abstract":"<div><p>Respiratory Oscillometry is a promising technique to provide information to medical practitioners on the respiratory system of a patient in a non-invasive fashion. It focuses on identifying the respiratory impedance between two signals: the air pressure and flow at the mouth opening. However, for conscious patients or lightly sedated ventilated patients, their respiratory effort such as breathing acts as a disturbance to the parameter estimation procedure. This paper is an extension to previous research published at the IFAC 2023 World Congress (Marchal et al., 2023) that proposed a method to estimate and remove this breathing disturbance using Gaussian Process Regression in the frequency domain. In this extension, Monte Carlo simulations are performed to validate the approach and to compare it to the Local Polynomial Method for breathing patients. In addition, measurements carried out on a lung emulator in a pressure-support ventilation mode provide further evidence of the method’s effectiveness at dealing with the disturbance experienced for ventilated patients. This is a step towards treating both breathing and ventilated patients using the same technique.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"29 ","pages":"Article 100264"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing and minimizing the impact of an additive disturbance for human respiratory system impedance estimation\",\"authors\":\"Antoine Marchal ,&nbsp;Andy Keymolen ,&nbsp;Gerd Vandersteen ,&nbsp;Frank Heck ,&nbsp;Ben van den Elshout ,&nbsp;John Lataire\",\"doi\":\"10.1016/j.ifacsc.2024.100264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Respiratory Oscillometry is a promising technique to provide information to medical practitioners on the respiratory system of a patient in a non-invasive fashion. It focuses on identifying the respiratory impedance between two signals: the air pressure and flow at the mouth opening. However, for conscious patients or lightly sedated ventilated patients, their respiratory effort such as breathing acts as a disturbance to the parameter estimation procedure. This paper is an extension to previous research published at the IFAC 2023 World Congress (Marchal et al., 2023) that proposed a method to estimate and remove this breathing disturbance using Gaussian Process Regression in the frequency domain. In this extension, Monte Carlo simulations are performed to validate the approach and to compare it to the Local Polynomial Method for breathing patients. In addition, measurements carried out on a lung emulator in a pressure-support ventilation mode provide further evidence of the method’s effectiveness at dealing with the disturbance experienced for ventilated patients. This is a step towards treating both breathing and ventilated patients using the same technique.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"29 \",\"pages\":\"Article 100264\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

呼吸振荡测量法是一种很有前途的技术,能以非侵入性的方式向医疗从业人员提供病人呼吸系统的信息。它的重点是识别两个信号之间的呼吸阻抗:开口处的气压和气流。然而,对于意识清醒的患者或轻度镇静通气患者,他们的呼吸努力(如呼吸)会对参数估计过程造成干扰。本文是对之前在 IFAC 2023 世界大会上发表的研究(Marchal 等人,2023 年)的扩展,该研究提出了一种在频域中使用高斯过程回归来估计和消除这种呼吸干扰的方法。在这一扩展中,进行了蒙特卡罗模拟以验证该方法,并将其与针对呼吸患者的局部多项式方法进行比较。此外,在压力支持通气模式下对肺模拟器进行的测量进一步证明了该方法在处理通气患者所受干扰方面的有效性。这是使用相同技术治疗呼吸和通气病人的一个进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing and minimizing the impact of an additive disturbance for human respiratory system impedance estimation

Respiratory Oscillometry is a promising technique to provide information to medical practitioners on the respiratory system of a patient in a non-invasive fashion. It focuses on identifying the respiratory impedance between two signals: the air pressure and flow at the mouth opening. However, for conscious patients or lightly sedated ventilated patients, their respiratory effort such as breathing acts as a disturbance to the parameter estimation procedure. This paper is an extension to previous research published at the IFAC 2023 World Congress (Marchal et al., 2023) that proposed a method to estimate and remove this breathing disturbance using Gaussian Process Regression in the frequency domain. In this extension, Monte Carlo simulations are performed to validate the approach and to compare it to the Local Polynomial Method for breathing patients. In addition, measurements carried out on a lung emulator in a pressure-support ventilation mode provide further evidence of the method’s effectiveness at dealing with the disturbance experienced for ventilated patients. This is a step towards treating both breathing and ventilated patients using the same technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
On the turnpike to design of deep neural networks: Explicit depth bounds Finite-time event-triggered tracking control for quadcopter attitude systems with zero compensation technology Efficiency criteria and dual techniques for some nonconvex multiple cost minimization models Analysis of Hyers–Ulam stability and controllability of non-linear switched impulsive systems with delays on time scales Design of fixed-time sliding mode control using variable exponents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1