利用谷歌地球引擎进行大数据分析,确定加利福尼亚州因野火造成的空气污染的时空趋势

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Pollution Research Pub Date : 2024-06-13 DOI:10.1016/j.apr.2024.102226
Abdullah Al Saim, Mohamed H. Aly
{"title":"利用谷歌地球引擎进行大数据分析,确定加利福尼亚州因野火造成的空气污染的时空趋势","authors":"Abdullah Al Saim,&nbsp;Mohamed H. Aly","doi":"10.1016/j.apr.2024.102226","DOIUrl":null,"url":null,"abstract":"<div><p>California has a long history of wildfires that release substantial amounts of smoke, contributing to regional air pollution. This study employs advancements in Earth observation satellites, cloud computing, and the Google Earth Engine to analyze MODIS MCD19A2 Version 6 level 2, Sentinel-5P NRTI AER AI, and Sentinel-5P NRTI NO2, evaluating the impact of wildfires from 2010 to 2022 on air quality in California. Historical fire events are cross-validated using the MODIS 1-km MYD14A1 V6 dataset, and the MODIS MAIAC-derived Aerosol Optical Depth (AOD) values are validated against AERONET AOD measurements from ground-based sun photometers. To assess the analysis's uncertainty, metrics such as Mean Absolute Error, Relative Mean Bias, and Root Mean Square Error are applied. Additionally, linear regression is used to verify the correlation between satellite and ground measurements. Results show that the average monthly MODIS MAIAC AOD at 470 nm and 550 nm tends to overestimate AOD by 24% and 6%, respectively, compared to AERONET AOD values. The correlation coefficient and adjusted R-squared value range from 0.78 to 0.80 and from 0.61 to 0.65, respectively, for AOD values at 470 nm and 550 nm. During the fire season, correlations exhibit closer associations, with a coefficient above 0.78 and an adjusted R-squared value above 0.63 are observed for both wavelengths. Sentinel-5P data reveal a significant increase in NO<sub>2</sub> concentration in the surrounding areas during the 2020 and 2021 wildfires. This study identifies historical spatiotemporal trends of air pollution attributable to wildfires in California from 2010 to 2022, informing decision-making in the development of effective prevention and mitigation programs.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big data analyses for determining the spatio-temporal trends of air pollution due to wildfires in California using Google Earth Engine\",\"authors\":\"Abdullah Al Saim,&nbsp;Mohamed H. Aly\",\"doi\":\"10.1016/j.apr.2024.102226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>California has a long history of wildfires that release substantial amounts of smoke, contributing to regional air pollution. This study employs advancements in Earth observation satellites, cloud computing, and the Google Earth Engine to analyze MODIS MCD19A2 Version 6 level 2, Sentinel-5P NRTI AER AI, and Sentinel-5P NRTI NO2, evaluating the impact of wildfires from 2010 to 2022 on air quality in California. Historical fire events are cross-validated using the MODIS 1-km MYD14A1 V6 dataset, and the MODIS MAIAC-derived Aerosol Optical Depth (AOD) values are validated against AERONET AOD measurements from ground-based sun photometers. To assess the analysis's uncertainty, metrics such as Mean Absolute Error, Relative Mean Bias, and Root Mean Square Error are applied. Additionally, linear regression is used to verify the correlation between satellite and ground measurements. Results show that the average monthly MODIS MAIAC AOD at 470 nm and 550 nm tends to overestimate AOD by 24% and 6%, respectively, compared to AERONET AOD values. The correlation coefficient and adjusted R-squared value range from 0.78 to 0.80 and from 0.61 to 0.65, respectively, for AOD values at 470 nm and 550 nm. During the fire season, correlations exhibit closer associations, with a coefficient above 0.78 and an adjusted R-squared value above 0.63 are observed for both wavelengths. Sentinel-5P data reveal a significant increase in NO<sub>2</sub> concentration in the surrounding areas during the 2020 and 2021 wildfires. This study identifies historical spatiotemporal trends of air pollution attributable to wildfires in California from 2010 to 2022, informing decision-making in the development of effective prevention and mitigation programs.</p></div>\",\"PeriodicalId\":8604,\"journal\":{\"name\":\"Atmospheric Pollution Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1309104224001910\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224001910","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

加利福尼亚州长期发生野火,释放大量烟雾,造成区域空气污染。本研究利用先进的地球观测卫星、云计算和谷歌地球引擎,分析 MODIS MCD19A2 第 6 版第 2 级、Sentinel-5P NRTI AER AI 和 Sentinel-5P NRTI NO2,评估 2010 年至 2022 年野火对加州空气质量的影响。利用 MODIS 1-km MYD14A1 V6 数据集对历史火灾事件进行了交叉验证,并将 MODIS MAIAC 导出的气溶胶光学深度 (AOD) 值与来自地面太阳光度计的 AERONET AOD 测量值进行了验证。为了评估分析的不确定性,采用了平均绝对误差、相对平均偏差和均方根误差等指标。此外,还使用线性回归来验证卫星和地面测量之间的相关性。结果表明,与 AERONET 的 AOD 值相比,MODIS MAIAC 470 nm 和 550 nm 的月平均 AOD 值分别高估了 24% 和 6%。470 nm 和 550 nm 波段的 AOD 值的相关系数和调整 R 平方值分别为 0.78 至 0.80 和 0.61 至 0.65。在火灾季节,相关性更为密切,两个波长的相关系数均超过 0.78,调整后的 R 平方值均超过 0.63。哨兵-5P 数据显示,在 2020 年和 2021 年野火期间,周边地区的二氧化氮浓度显著增加。这项研究确定了 2010 年至 2022 年加州野火造成的空气污染的历史时空趋势,为制定有效的预防和缓解计划提供了决策依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big data analyses for determining the spatio-temporal trends of air pollution due to wildfires in California using Google Earth Engine

California has a long history of wildfires that release substantial amounts of smoke, contributing to regional air pollution. This study employs advancements in Earth observation satellites, cloud computing, and the Google Earth Engine to analyze MODIS MCD19A2 Version 6 level 2, Sentinel-5P NRTI AER AI, and Sentinel-5P NRTI NO2, evaluating the impact of wildfires from 2010 to 2022 on air quality in California. Historical fire events are cross-validated using the MODIS 1-km MYD14A1 V6 dataset, and the MODIS MAIAC-derived Aerosol Optical Depth (AOD) values are validated against AERONET AOD measurements from ground-based sun photometers. To assess the analysis's uncertainty, metrics such as Mean Absolute Error, Relative Mean Bias, and Root Mean Square Error are applied. Additionally, linear regression is used to verify the correlation between satellite and ground measurements. Results show that the average monthly MODIS MAIAC AOD at 470 nm and 550 nm tends to overestimate AOD by 24% and 6%, respectively, compared to AERONET AOD values. The correlation coefficient and adjusted R-squared value range from 0.78 to 0.80 and from 0.61 to 0.65, respectively, for AOD values at 470 nm and 550 nm. During the fire season, correlations exhibit closer associations, with a coefficient above 0.78 and an adjusted R-squared value above 0.63 are observed for both wavelengths. Sentinel-5P data reveal a significant increase in NO2 concentration in the surrounding areas during the 2020 and 2021 wildfires. This study identifies historical spatiotemporal trends of air pollution attributable to wildfires in California from 2010 to 2022, informing decision-making in the development of effective prevention and mitigation programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
期刊最新文献
Editorial Board Concurrent measurements of atmospheric Hg in outdoor and indoor at a megacity in Southeast Asia: First insights from the region Investigating the role of photochemistry and impact of regional and local contributions on gaseous pollutant concentrations (NO, NO2, O3, CO, and SO2) at urban and suburban sites Sensitivity of AERMOD (V21112) RLINEXT dispersion model outputs by source type to variability in single noise barrier height and separation distance Carbonaceous aerosol emissions from secondary lighting sources: Emission factors and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1