mTOR 抑制能以 APOE 基因型依赖性方式增强阿尔茨海默病的突触和线粒体功能。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Cerebral Blood Flow and Metabolism Pub Date : 2024-10-01 Epub Date: 2024-06-16 DOI:10.1177/0271678X241261942
Basavaraju G Sanganahalli, Jelena M Mihailovic, Hemendra J Vekaria, Daniel Coman, Andrew T Yackzan, Abeoseh Flemister, Chetan Aware, Kathryn Wenger, W Brad Hubbard, Patrick G Sullivan, Fahmeed Hyder, Ai-Ling Lin
{"title":"mTOR 抑制能以 APOE 基因型依赖性方式增强阿尔茨海默病的突触和线粒体功能。","authors":"Basavaraju G Sanganahalli, Jelena M Mihailovic, Hemendra J Vekaria, Daniel Coman, Andrew T Yackzan, Abeoseh Flemister, Chetan Aware, Kathryn Wenger, W Brad Hubbard, Patrick G Sullivan, Fahmeed Hyder, Ai-Ling Lin","doi":"10.1177/0271678X241261942","DOIUrl":null,"url":null,"abstract":"<p><p>Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using <i>in vivo</i> <sup>1</sup>H-[<sup>13</sup>C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494852/pdf/","citationCount":"0","resultStr":"{\"title\":\"mTOR inhibition enhances synaptic and mitochondrial function in Alzheimer's disease in an APOE genotype-dependent manner.\",\"authors\":\"Basavaraju G Sanganahalli, Jelena M Mihailovic, Hemendra J Vekaria, Daniel Coman, Andrew T Yackzan, Abeoseh Flemister, Chetan Aware, Kathryn Wenger, W Brad Hubbard, Patrick G Sullivan, Fahmeed Hyder, Ai-Ling Lin\",\"doi\":\"10.1177/0271678X241261942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using <i>in vivo</i> <sup>1</sup>H-[<sup>13</sup>C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241261942\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241261942","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

载脂蛋白ε4(APOE4)携带者在阿尔茨海默病(AD)发病前几十年就会出现大脑代谢功能障碍。这项研究的目标之一是确定雷帕霉素(一种哺乳动物雷帕霉素靶标(mTOR)抑制剂)是否会在人类 APOE4 基因(E4FAD)无症状小鼠出现代谢缺陷之前增强其突触和线粒体功能。第二个目标是确定与人类 APOE3 等位基因(E3FAD)小鼠(中性 AD 遗传风险因子)相比,雷帕霉素是否会产生遗传依赖性反应。我们用对照组或雷帕霉素饮食喂养无症状的 E4FAD 和 E3FAD 小鼠,从它们 3 个月大开始,连续喂养 16 周。使用体内 1H-[13C]质子观测碳结合磁共振波谱测量神经元线粒体氧化代谢和兴奋性神经传递率,并使用 Seahorse 分离线粒体生物能测量。我们发现,雷帕霉素能增强无症状 E4FAD 小鼠神经元线粒体功能、谷氨酸-谷氨酰胺循环和 TCA 循环速率。相反,雷帕霉素能增强 E3FAD 小鼠的糖酵解、非神经元活动和抑制性神经传递。这些研究结果表明,雷帕霉素或许能通过增强认知功能完好的APOE4携带者的大脑代谢功能来降低AD风险,而不同的APOE基因型对雷帕霉素的反应也不尽相同。未来的雷帕霉素疗法可能需要考虑精准医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mTOR inhibition enhances synaptic and mitochondrial function in Alzheimer's disease in an APOE genotype-dependent manner.

Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using in vivo 1H-[13C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
期刊最新文献
Sensitivity assessment of QSM+qBOLD (or QQ) in detecting elevated oxygen extraction fraction (OEF) in physiological change. Impact of intracranial hypertension and cerebral perfusion pressure on spreading depolarization. Retinal microvascular phenotypes can track small vessel disease burden and CPAP treatment effectiveness in obstructive sleep apnoea. Static autoregulation in humans. Cerebral blood flow regulation and cognitive performance in hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1