增效双添加调节碳酸盐电解质可稳定侵蚀性富镍锂金属全电池的双向界面

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-07 DOI:10.1016/j.nanoen.2024.109862
Kun Wang , Xiangxiang Wang , Waqar Ahmad , Jing Zhao , Han Li , Liguang Wang , Zhengwei Wan , Wei Jiang , Siying Li , Fan Yang , Min Ling , Jun Chen , Weiwei Zhu , Chengdu Liang
{"title":"增效双添加调节碳酸盐电解质可稳定侵蚀性富镍锂金属全电池的双向界面","authors":"Kun Wang ,&nbsp;Xiangxiang Wang ,&nbsp;Waqar Ahmad ,&nbsp;Jing Zhao ,&nbsp;Han Li ,&nbsp;Liguang Wang ,&nbsp;Zhengwei Wan ,&nbsp;Wei Jiang ,&nbsp;Siying Li ,&nbsp;Fan Yang ,&nbsp;Min Ling ,&nbsp;Jun Chen ,&nbsp;Weiwei Zhu ,&nbsp;Chengdu Liang","doi":"10.1016/j.nanoen.2024.109862","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating energy demands underscore the importance of Ni-rich Li-metal batteries (LMBs); however, their aggressive bidirectional electrode-electrolyte interfacial issues hinder the practical implementation. Overcoming the limited solubility (∼800 ppm) of lithium nitrate (LiNO<sub>3</sub>) in commercially available carbonate electrolytes holds promise. Nevertheless, unintended effects caused by solubilizers raise emerging concerns. Herein, an additive solubilized additive strategy is introduced to synergistically stabilize the Ni-rich cathode and Li-metal anode (LMA) in carbonate electrolytes, where tris (2, 2, 2-trifluoroethyl) borate (TTFEB) as a solubilizer utilizes its electron-deficient B atom to snatch electron-rich NO<sub>3</sub><sup>-</sup> anion of insoluble LiNO<sub>3</sub> and thus forms a unique TTFEB-LiNO<sub>3</sub> solvation structure in carbonate electrolytes. Valuably, the dual-additive electrolyte facilitates the formation of a robust LiF/Li<sub>3</sub>N-rich solid electrolyte interphase on LMA and a thin, uniform F, B, N-rich cathode electrolyte interphase on Ni-rich cathode, effectively suppressing the breeding of Li dendrites and mitigating the structure degradation of Ni-rich cathode. Consequently, the full cell, featuring a thin Li anode (50 µm) and a high-loading NCM811 cathode (4.04 mAh cm<sup>−2</sup>) in the dual-additive electrolyte, demonstrates a notable capacity retention of 81.5 % after 140 cycles. This work reveals the intricated LiNO<sub>3</sub>-carbonate solvation chemistry, inspiring further advancements in electrolyte engineering for practical LMBs.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic dual-additive regulated carbonate electrolyte stabilizes bidirectional interface for aggressive Ni-rich Li-metal full batteries\",\"authors\":\"Kun Wang ,&nbsp;Xiangxiang Wang ,&nbsp;Waqar Ahmad ,&nbsp;Jing Zhao ,&nbsp;Han Li ,&nbsp;Liguang Wang ,&nbsp;Zhengwei Wan ,&nbsp;Wei Jiang ,&nbsp;Siying Li ,&nbsp;Fan Yang ,&nbsp;Min Ling ,&nbsp;Jun Chen ,&nbsp;Weiwei Zhu ,&nbsp;Chengdu Liang\",\"doi\":\"10.1016/j.nanoen.2024.109862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The escalating energy demands underscore the importance of Ni-rich Li-metal batteries (LMBs); however, their aggressive bidirectional electrode-electrolyte interfacial issues hinder the practical implementation. Overcoming the limited solubility (∼800 ppm) of lithium nitrate (LiNO<sub>3</sub>) in commercially available carbonate electrolytes holds promise. Nevertheless, unintended effects caused by solubilizers raise emerging concerns. Herein, an additive solubilized additive strategy is introduced to synergistically stabilize the Ni-rich cathode and Li-metal anode (LMA) in carbonate electrolytes, where tris (2, 2, 2-trifluoroethyl) borate (TTFEB) as a solubilizer utilizes its electron-deficient B atom to snatch electron-rich NO<sub>3</sub><sup>-</sup> anion of insoluble LiNO<sub>3</sub> and thus forms a unique TTFEB-LiNO<sub>3</sub> solvation structure in carbonate electrolytes. Valuably, the dual-additive electrolyte facilitates the formation of a robust LiF/Li<sub>3</sub>N-rich solid electrolyte interphase on LMA and a thin, uniform F, B, N-rich cathode electrolyte interphase on Ni-rich cathode, effectively suppressing the breeding of Li dendrites and mitigating the structure degradation of Ni-rich cathode. Consequently, the full cell, featuring a thin Li anode (50 µm) and a high-loading NCM811 cathode (4.04 mAh cm<sup>−2</sup>) in the dual-additive electrolyte, demonstrates a notable capacity retention of 81.5 % after 140 cycles. This work reveals the intricated LiNO<sub>3</sub>-carbonate solvation chemistry, inspiring further advancements in electrolyte engineering for practical LMBs.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006104\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006104","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

不断升级的能源需求凸显了富镍金属锂电池(LMB)的重要性;然而,其咄咄逼人的双向电极-电解质界面问题阻碍了其实际应用。克服硝酸锂(LiNO3)在市售碳酸盐电解质中的有限溶解度(∼800 ppm)是有希望的。然而,增溶剂造成的意外影响也引起了人们的关注。本文介绍了一种增溶添加剂策略,以协同稳定碳酸盐电解液中的富镍阴极和锂金属阳极(LMA),其中作为增溶剂的硼(2, 2, 2-三氟乙基)三酯(TTFEB)利用其缺电子的 B 原子攫取不溶性 LiNO3 中富含电子的 NO3- 阴离子,从而在碳酸盐电解液中形成独特的 TTFEB-LiNO3 溶解结构。值得注意的是,这种双加成电解质有助于在 LMA 上形成坚固的富含 LiF/Li3N 的固体电解质互相,在富含 Ni- 的阴极上形成薄而均匀的富含 F、B、N 的阴极电解质互相,从而有效抑制了锂枝晶的孳生,减轻了富含 Ni- 的阴极的结构退化。因此,在双加成电解质中采用薄锂离子阳极(50 µm)和高负载 NCM811 阴极(4.04 mAh cm-2)的全电池在循环 140 次后,容量保持率达到 81.5%。这项研究揭示了错综复杂的 LiNO3-碳酸盐溶解化学性质,进一步推动了实用 LMB 电解质工程的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic dual-additive regulated carbonate electrolyte stabilizes bidirectional interface for aggressive Ni-rich Li-metal full batteries

The escalating energy demands underscore the importance of Ni-rich Li-metal batteries (LMBs); however, their aggressive bidirectional electrode-electrolyte interfacial issues hinder the practical implementation. Overcoming the limited solubility (∼800 ppm) of lithium nitrate (LiNO3) in commercially available carbonate electrolytes holds promise. Nevertheless, unintended effects caused by solubilizers raise emerging concerns. Herein, an additive solubilized additive strategy is introduced to synergistically stabilize the Ni-rich cathode and Li-metal anode (LMA) in carbonate electrolytes, where tris (2, 2, 2-trifluoroethyl) borate (TTFEB) as a solubilizer utilizes its electron-deficient B atom to snatch electron-rich NO3- anion of insoluble LiNO3 and thus forms a unique TTFEB-LiNO3 solvation structure in carbonate electrolytes. Valuably, the dual-additive electrolyte facilitates the formation of a robust LiF/Li3N-rich solid electrolyte interphase on LMA and a thin, uniform F, B, N-rich cathode electrolyte interphase on Ni-rich cathode, effectively suppressing the breeding of Li dendrites and mitigating the structure degradation of Ni-rich cathode. Consequently, the full cell, featuring a thin Li anode (50 µm) and a high-loading NCM811 cathode (4.04 mAh cm−2) in the dual-additive electrolyte, demonstrates a notable capacity retention of 81.5 % after 140 cycles. This work reveals the intricated LiNO3-carbonate solvation chemistry, inspiring further advancements in electrolyte engineering for practical LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1