基于异外延球形金/铂纳米隙电极的单分子结中的负差分电阻

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-06-16 DOI:10.1002/aelm.202400390
Dongbao Yin, Miku Furushima, Eiji Tsuchihata, Seiichiro Izawa, Tomoya Ono, Ryo Shintani, Yutaka Majima
{"title":"基于异外延球形金/铂纳米隙电极的单分子结中的负差分电阻","authors":"Dongbao Yin, Miku Furushima, Eiji Tsuchihata, Seiichiro Izawa, Tomoya Ono, Ryo Shintani, Yutaka Majima","doi":"10.1002/aelm.202400390","DOIUrl":null,"url":null,"abstract":"Single-molecule junctions exploit the internal structure of molecular orbitals to construct a new class of functional quantum devices. The demonstration of negative differential resistance (NDR) in single-molecule junctions is direct evidence of quantum mechanical tunneling through a molecular orbital. Here, a pronounced NDR effect is reported with a peak-to-valley ratio of 30.1 on a single-molecule junction of π-conjugated quinoidal-fused oligosilole derivatives, Si2 × 2, embedded between the unique electroless gold-plated heteroepitaxial spherical Au/Pt nanogap electrodes. This NDR feature persists in a consecutive endurance test of 180 current traces. the thermally stable NDR effects in the Si2 × 2 single-molecule junctions between 9 and 300 K are demonstrated. The density functional theory calculations under electric fields indicate that the NDR effect can be ascribed to the bias-dependent resonant tunneling transport via the polarized HOMO, which has asymmetrically changed electrode coupling with increased bias voltages. The results confirm a promising electrical platform for constructing functional quantum devices at the single-molecule level.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative Differential Resistance in Single-Molecule Junctions Based on Heteroepitaxial Spherical Au/Pt Nanogap Electrodes\",\"authors\":\"Dongbao Yin, Miku Furushima, Eiji Tsuchihata, Seiichiro Izawa, Tomoya Ono, Ryo Shintani, Yutaka Majima\",\"doi\":\"10.1002/aelm.202400390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-molecule junctions exploit the internal structure of molecular orbitals to construct a new class of functional quantum devices. The demonstration of negative differential resistance (NDR) in single-molecule junctions is direct evidence of quantum mechanical tunneling through a molecular orbital. Here, a pronounced NDR effect is reported with a peak-to-valley ratio of 30.1 on a single-molecule junction of π-conjugated quinoidal-fused oligosilole derivatives, Si2 × 2, embedded between the unique electroless gold-plated heteroepitaxial spherical Au/Pt nanogap electrodes. This NDR feature persists in a consecutive endurance test of 180 current traces. the thermally stable NDR effects in the Si2 × 2 single-molecule junctions between 9 and 300 K are demonstrated. The density functional theory calculations under electric fields indicate that the NDR effect can be ascribed to the bias-dependent resonant tunneling transport via the polarized HOMO, which has asymmetrically changed electrode coupling with increased bias voltages. The results confirm a promising electrical platform for constructing functional quantum devices at the single-molecule level.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400390\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400390","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单分子结利用分子轨道的内部结构构建了一类新型功能量子器件。单分子结中的负微分电阻(NDR)是通过分子轨道进行量子力学隧穿的直接证据。在此报告中,π-共轭醌基融合低聚硅氧烷衍生物(Si2 × 2)的单分子结具有明显的负差分电阻效应,峰谷比为 30.1,嵌入在独特的无电解镀金异外延球形金/铂纳米隙电极之间。这种 NDR 特性在 180 个电流痕量的连续耐久测试中持续存在。在 9 至 300 K 的温度范围内,Si2 × 2 单分子结的热稳定性 NDR 效应得到了证实。电场下的密度泛函理论计算表明,NDR 效应可归因于通过极化 HOMO 进行的偏压相关共振隧穿传输,随着偏压的增加,电极耦合发生了非对称变化。研究结果证实,在单分子水平上构建功能量子器件的电学平台大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Negative Differential Resistance in Single-Molecule Junctions Based on Heteroepitaxial Spherical Au/Pt Nanogap Electrodes
Single-molecule junctions exploit the internal structure of molecular orbitals to construct a new class of functional quantum devices. The demonstration of negative differential resistance (NDR) in single-molecule junctions is direct evidence of quantum mechanical tunneling through a molecular orbital. Here, a pronounced NDR effect is reported with a peak-to-valley ratio of 30.1 on a single-molecule junction of π-conjugated quinoidal-fused oligosilole derivatives, Si2 × 2, embedded between the unique electroless gold-plated heteroepitaxial spherical Au/Pt nanogap electrodes. This NDR feature persists in a consecutive endurance test of 180 current traces. the thermally stable NDR effects in the Si2 × 2 single-molecule junctions between 9 and 300 K are demonstrated. The density functional theory calculations under electric fields indicate that the NDR effect can be ascribed to the bias-dependent resonant tunneling transport via the polarized HOMO, which has asymmetrically changed electrode coupling with increased bias voltages. The results confirm a promising electrical platform for constructing functional quantum devices at the single-molecule level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Self-Selective Crossbar Synapse Array with n-ZnO/p-NiOx/n-ZnO Structure for Neuromorphic Computing 2D C‐Axis‐Aligned Crystalline In─S─O Transistors Processed from Aqueous Solution Volatile and Non‐Volatile Dual‐Function Electrically Controlled Ultraviolet Magneto‐Optical Effect in TmIG/Pt Purely Electric‐Driven Field‐Free Magnetization Switching in L10‐FePt Single Film for Reconfigurable Spin Logic Computing Effect of Substrate on Spin‐Wave Propagation Properties in Ferrimagnetic Thulium Iron Garnet Thin Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1