通过可能适用于角膜接触镜产品的光学纳米结构监测眼部疾病

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2024-06-14 DOI:10.1038/s41427-024-00550-y
Bader AlQattan, Mohamed Elsherif, Fahad Alam, Haider Butt
{"title":"通过可能适用于角膜接触镜产品的光学纳米结构监测眼部疾病","authors":"Bader AlQattan, Mohamed Elsherif, Fahad Alam, Haider Butt","doi":"10.1038/s41427-024-00550-y","DOIUrl":null,"url":null,"abstract":"Ocular diseases can cause vision problems or even blindness if they are not detected early. Some ocular diseases generate irregular physical changes in the eye; therefore, reliable diagnostic technology for continuous monitoring of the eye is an unmet clinical need. In this study, a pulsed laser (Nd:YAG) was used to create optical nanostructures on a hydrogel-based commercial contact lens. Simulations were used to determine the spacing of the nanostructures, which were then produced and tested on the lens in ambient humidity and fully hydrated environments. The nanostructures produced a 4° diffraction angle difference in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens. The curved nanostructures exhibited a series of visible rainbow colors with an average range of 8° under normal room light. A spherical surface was also used to simulate the human eye, and application of a force (curvature change) caused the nanostructure spacing to change, influencing the visible color of the contact lenses. A smartphone camera application was used to measure the progress of ocular diseases by analyzing the RGB color values of the visible color. The nanostructures were also responsive to K+ ion variations in artificial tear fluids, with a 12 mmol L−1 sensitivity, which may allow the detection of ocular ionic strength changes. A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-13"},"PeriodicalIF":8.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00550-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Monitoring ocular disease via optical nanostructures potentially applicable to corneal contact lens products\",\"authors\":\"Bader AlQattan, Mohamed Elsherif, Fahad Alam, Haider Butt\",\"doi\":\"10.1038/s41427-024-00550-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ocular diseases can cause vision problems or even blindness if they are not detected early. Some ocular diseases generate irregular physical changes in the eye; therefore, reliable diagnostic technology for continuous monitoring of the eye is an unmet clinical need. In this study, a pulsed laser (Nd:YAG) was used to create optical nanostructures on a hydrogel-based commercial contact lens. Simulations were used to determine the spacing of the nanostructures, which were then produced and tested on the lens in ambient humidity and fully hydrated environments. The nanostructures produced a 4° diffraction angle difference in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens. The curved nanostructures exhibited a series of visible rainbow colors with an average range of 8° under normal room light. A spherical surface was also used to simulate the human eye, and application of a force (curvature change) caused the nanostructure spacing to change, influencing the visible color of the contact lenses. A smartphone camera application was used to measure the progress of ocular diseases by analyzing the RGB color values of the visible color. The nanostructures were also responsive to K+ ion variations in artificial tear fluids, with a 12 mmol L−1 sensitivity, which may allow the detection of ocular ionic strength changes. A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"16 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-024-00550-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-024-00550-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00550-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring ocular disease via optical nanostructures potentially applicable to corneal contact lens products
Ocular diseases can cause vision problems or even blindness if they are not detected early. Some ocular diseases generate irregular physical changes in the eye; therefore, reliable diagnostic technology for continuous monitoring of the eye is an unmet clinical need. In this study, a pulsed laser (Nd:YAG) was used to create optical nanostructures on a hydrogel-based commercial contact lens. Simulations were used to determine the spacing of the nanostructures, which were then produced and tested on the lens in ambient humidity and fully hydrated environments. The nanostructures produced a 4° diffraction angle difference in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens. The curved nanostructures exhibited a series of visible rainbow colors with an average range of 8° under normal room light. A spherical surface was also used to simulate the human eye, and application of a force (curvature change) caused the nanostructure spacing to change, influencing the visible color of the contact lenses. A smartphone camera application was used to measure the progress of ocular diseases by analyzing the RGB color values of the visible color. The nanostructures were also responsive to K+ ion variations in artificial tear fluids, with a 12 mmol L−1 sensitivity, which may allow the detection of ocular ionic strength changes. A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Relationship between network topology and negative electrode properties in Wadsley–Roth phase TiNb2O7 Recent advances in high-entropy superconductors Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection Band anisotropy and effective mass renormalization in strained metallic VO2 (101) thin films Molecular beam epitaxial In2Te3 electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1