改进 NMC811 电化学性能的先进分子层沉积 SixZnyOz 薄膜涂层

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-06-14 DOI:10.1002/batt.202400241
Sri Harsha Akella, Ayan Mukherjee, Ortal Lidor-Shalev, Roman Bashkurov, Yang Wang, Isaac Buchine, Longlong Wang, Melina Zysler, Michal Ejgenberg, Tatyana Kravchuk, Alexander C. Kozen, Dmitry Bravo-Zhivotovskii, Yitzhak Apeloig, Sang Bok Lee, Xiulin Fan, Michal Leskes, Malachi Noked
{"title":"改进 NMC811 电化学性能的先进分子层沉积 SixZnyOz 薄膜涂层","authors":"Sri Harsha Akella,&nbsp;Ayan Mukherjee,&nbsp;Ortal Lidor-Shalev,&nbsp;Roman Bashkurov,&nbsp;Yang Wang,&nbsp;Isaac Buchine,&nbsp;Longlong Wang,&nbsp;Melina Zysler,&nbsp;Michal Ejgenberg,&nbsp;Tatyana Kravchuk,&nbsp;Alexander C. Kozen,&nbsp;Dmitry Bravo-Zhivotovskii,&nbsp;Yitzhak Apeloig,&nbsp;Sang Bok Lee,&nbsp;Xiulin Fan,&nbsp;Michal Leskes,&nbsp;Malachi Noked","doi":"10.1002/batt.202400241","DOIUrl":null,"url":null,"abstract":"<p>The practical realization of Nickel-rich layered oxide cathode materials such as LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) is hampered by several structural and interfacial instabilities over prolonged cycling. Several reports have proposed surface passivation via an artificial cathode electrolyte interphase (ACEI) as a promising method for mitigating the parasitic reactions affecting NMC811 while simultaneously improving its electrochemical performance over prolonged cycling. Herein, we report an in-house designed (tBuMe<sub>2</sub>Si)<sub>2</sub>Zn single source precursor for developing Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> ternary CEI thin films on NMC811 via molecular layer deposition (MLD) in combination with O<sub>3</sub> or H<sub>2</sub>O as oxidizing agent. We demonstrate that the single precursor (tBuMe<sub>2</sub>Si)<sub>2</sub>Zn avoids the need for two different precursors (Si &amp; Zn). In-depth spectroscopic studies reveal the mechanism of the formation of organosiloxane/zinc-oxide composite thin film, via intermediates of unprecedented organo-silicon-zinc compounds. Understanding the reaction mechanism paved the path for a successful deposition of ACEI on NMC811. Rate capability studies shows the ACEI protected cathodes exhibit higher discharge capacity at 4 C than pristine NMC811. Furthermore, studies on full cells with graphite anode were conducted to evaluate the practical viability of Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> ACEI thin films on NMC811. After prolonged cycling the ACEI-coated NMC811 full cells significantly improved the electrochemical performance than pristine NMC811 by ~12%.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400241","citationCount":"0","resultStr":"{\"title\":\"Advanced Molecular Layer Deposition of SixZnyOz Thin Film Coatings for Improved Electrochemical Performance of NMC811\",\"authors\":\"Sri Harsha Akella,&nbsp;Ayan Mukherjee,&nbsp;Ortal Lidor-Shalev,&nbsp;Roman Bashkurov,&nbsp;Yang Wang,&nbsp;Isaac Buchine,&nbsp;Longlong Wang,&nbsp;Melina Zysler,&nbsp;Michal Ejgenberg,&nbsp;Tatyana Kravchuk,&nbsp;Alexander C. Kozen,&nbsp;Dmitry Bravo-Zhivotovskii,&nbsp;Yitzhak Apeloig,&nbsp;Sang Bok Lee,&nbsp;Xiulin Fan,&nbsp;Michal Leskes,&nbsp;Malachi Noked\",\"doi\":\"10.1002/batt.202400241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The practical realization of Nickel-rich layered oxide cathode materials such as LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) is hampered by several structural and interfacial instabilities over prolonged cycling. Several reports have proposed surface passivation via an artificial cathode electrolyte interphase (ACEI) as a promising method for mitigating the parasitic reactions affecting NMC811 while simultaneously improving its electrochemical performance over prolonged cycling. Herein, we report an in-house designed (tBuMe<sub>2</sub>Si)<sub>2</sub>Zn single source precursor for developing Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> ternary CEI thin films on NMC811 via molecular layer deposition (MLD) in combination with O<sub>3</sub> or H<sub>2</sub>O as oxidizing agent. We demonstrate that the single precursor (tBuMe<sub>2</sub>Si)<sub>2</sub>Zn avoids the need for two different precursors (Si &amp; Zn). In-depth spectroscopic studies reveal the mechanism of the formation of organosiloxane/zinc-oxide composite thin film, via intermediates of unprecedented organo-silicon-zinc compounds. Understanding the reaction mechanism paved the path for a successful deposition of ACEI on NMC811. Rate capability studies shows the ACEI protected cathodes exhibit higher discharge capacity at 4 C than pristine NMC811. Furthermore, studies on full cells with graphite anode were conducted to evaluate the practical viability of Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> ACEI thin films on NMC811. After prolonged cycling the ACEI-coated NMC811 full cells significantly improved the electrochemical performance than pristine NMC811 by ~12%.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400241\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400241\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

富镍层状氧化物阴极材料(如 LiNi0.8Mn0.1Co0.1O2(NMC811))在实际应用中受到长期循环过程中若干结构和界面不稳定性的影响。一些报告提出,通过人工阴极电解质间相(ACEI)进行表面钝化是一种很有前途的方法,可减轻影响 NMC811 的寄生反应,同时提高其在长时间循环中的电化学性能。在此,我们报告了一种内部设计的 (tBuMe2Si)2Zn 单源前驱体,用于通过分子层沉积(MLD)结合 O3 或 H2O 作为氧化剂在 NMC811 上开发 SixZnyOz 三元 CEI 薄膜。我们证明,单一前驱体 (tBuMe2Si)2Zn 可避免使用两种不同的前驱体(Si 和 Zn)。深入的光谱研究揭示了有机硅氧烷/氧化锌复合薄膜通过前所未有的有机硅锌化合物中间体形成的机理。对反应机理的了解为在 NMC811 上成功沉积 ACEI 铺平了道路。速率能力研究表明,ACEI 保护阴极在 4 C 时的放电容量高于原始 NMC811。此外,还对石墨阳极全电池进行了研究,以评估 SixZnyOz ACEI 薄膜在 NMC811 上的实际可行性。经过长时间循环后,涂有 ACEI 的 NMC811 全电池的电化学性能比原始 NMC811 明显提高了约 12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced Molecular Layer Deposition of SixZnyOz Thin Film Coatings for Improved Electrochemical Performance of NMC811

The practical realization of Nickel-rich layered oxide cathode materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) is hampered by several structural and interfacial instabilities over prolonged cycling. Several reports have proposed surface passivation via an artificial cathode electrolyte interphase (ACEI) as a promising method for mitigating the parasitic reactions affecting NMC811 while simultaneously improving its electrochemical performance over prolonged cycling. Herein, we report an in-house designed (tBuMe2Si)2Zn single source precursor for developing SixZnyOz ternary CEI thin films on NMC811 via molecular layer deposition (MLD) in combination with O3 or H2O as oxidizing agent. We demonstrate that the single precursor (tBuMe2Si)2Zn avoids the need for two different precursors (Si & Zn). In-depth spectroscopic studies reveal the mechanism of the formation of organosiloxane/zinc-oxide composite thin film, via intermediates of unprecedented organo-silicon-zinc compounds. Understanding the reaction mechanism paved the path for a successful deposition of ACEI on NMC811. Rate capability studies shows the ACEI protected cathodes exhibit higher discharge capacity at 4 C than pristine NMC811. Furthermore, studies on full cells with graphite anode were conducted to evaluate the practical viability of SixZnyOz ACEI thin films on NMC811. After prolonged cycling the ACEI-coated NMC811 full cells significantly improved the electrochemical performance than pristine NMC811 by ~12%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1