应用自然语言处理和遗传算法微调经济活动分析分类器的超参数

Ivan Malashin, Igor Masich, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov
{"title":"应用自然语言处理和遗传算法微调经济活动分析分类器的超参数","authors":"Ivan Malashin, Igor Masich, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov","doi":"10.3390/bdcc8060068","DOIUrl":null,"url":null,"abstract":"This study proposes a method for classifying economic activity descriptors to match Nomenclature of Economic Activities (NACE) codes, employing a blend of machine learning techniques and expert evaluation. By leveraging natural language processing (NLP) methods to vectorize activity descriptors and utilizing genetic algorithm (GA) optimization to fine-tune hyperparameters in multi-class classifiers like Naive Bayes, Decision Trees, Random Forests, and Multilayer Perceptrons, our aim is to boost the accuracy and reliability of an economic classification system. This system faces challenges due to the absence of precise target labels in the dataset. Hence, it is essential to initially check the accuracy of utilized methods based on expert evaluations using a small dataset before generalizing to a larger one.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":"40 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Natural Language Processing and Genetic Algorithm to Fine-Tune Hyperparameters of Classifiers for Economic Activities Analysis\",\"authors\":\"Ivan Malashin, Igor Masich, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov\",\"doi\":\"10.3390/bdcc8060068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a method for classifying economic activity descriptors to match Nomenclature of Economic Activities (NACE) codes, employing a blend of machine learning techniques and expert evaluation. By leveraging natural language processing (NLP) methods to vectorize activity descriptors and utilizing genetic algorithm (GA) optimization to fine-tune hyperparameters in multi-class classifiers like Naive Bayes, Decision Trees, Random Forests, and Multilayer Perceptrons, our aim is to boost the accuracy and reliability of an economic classification system. This system faces challenges due to the absence of precise target labels in the dataset. Hence, it is essential to initially check the accuracy of utilized methods based on expert evaluations using a small dataset before generalizing to a larger one.\",\"PeriodicalId\":505155,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc8060068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8060068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用机器学习技术和专家评估相结合的方法,提出了一种经济活动描述符分类方法,以匹配经济活动术语(NACE)代码。通过利用自然语言处理(NLP)方法对活动描述符进行矢量化,并利用遗传算法(GA)优化来微调 Naive Bayes、决策树、随机森林和多层感知器等多类分类器中的超参数,我们的目标是提高经济分类系统的准确性和可靠性。由于数据集中缺乏精确的目标标签,该系统面临着挑战。因此,在推广到更大的数据集之前,必须先根据专家评估使用小数据集检查所用方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Natural Language Processing and Genetic Algorithm to Fine-Tune Hyperparameters of Classifiers for Economic Activities Analysis
This study proposes a method for classifying economic activity descriptors to match Nomenclature of Economic Activities (NACE) codes, employing a blend of machine learning techniques and expert evaluation. By leveraging natural language processing (NLP) methods to vectorize activity descriptors and utilizing genetic algorithm (GA) optimization to fine-tune hyperparameters in multi-class classifiers like Naive Bayes, Decision Trees, Random Forests, and Multilayer Perceptrons, our aim is to boost the accuracy and reliability of an economic classification system. This system faces challenges due to the absence of precise target labels in the dataset. Hence, it is essential to initially check the accuracy of utilized methods based on expert evaluations using a small dataset before generalizing to a larger one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Cancer Detection and Localizing the Mass Area Using Deep Learning Trends and Challenges Towards Effective Data-Driven Decision Making in UK Small and Medium-Sized Enterprises: Case Studies and Lessons Learnt from the Analysis of 85 Small and Medium-Sized Enterprises Demystifying Mental Health by Decoding Facial Action Unit Sequences AMIKOMNET: Novel Structure for a Deep Learning Model to Enhance COVID-19 Classification Task Performance The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1