{"title":"开发具有成本效益和能效的深度学习方法的绿色人工智能驱动理念:以埃默氏寄生虫检测中的应用为例","authors":"Suheda Semih Acmali, Yasin Ortakci, Huseyin Seker","doi":"10.1002/aisy.202300644","DOIUrl":null,"url":null,"abstract":"<p>Although large-scale pretrained convolutinal neural networks (CNN) models have shown impressive transfer learning capabilities, they come with drawbacks such as high energy consumption and computational cost due to their potential redundant parameters. This study presents an innovative weight-level pruning technique that mitigates the challenges of overparameterization, and subsequently minimizes the electricity usage of such large deep learning models. The method focuses on removing redundant parameters while upholding model accuracy. This methodology is applied to classify <i>Eimeria</i> species parasites from fowls and rabbits. By leveraging a set of 27 pretrained CNN models with a number of parameters between 3.0M and 118.5M, the framework has identified a 4.8M-parameter model with the highest accuracy for both animals. The model is then subjected to a systematic pruning process, resulting in an 8% reduction in parameters and a 421M reduction in floating point operations while maintaining the same classification accuracy for both fowls and rabbits. Furthermore, unlike the existing literature where two separate models are created for rabbits and fowls, this article presents a combined model with 17 classes. This approach has resulted in a CNN model with nearly 50% reduced parameter size while retaining the same accuracy of over 90%.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 7","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300644","citationCount":"0","resultStr":"{\"title\":\"Green AI-Driven Concept for the Development of Cost-Effective and Energy-Efficient Deep Learning Method: Application in the Detection of Eimeria Parasites as a Case Study\",\"authors\":\"Suheda Semih Acmali, Yasin Ortakci, Huseyin Seker\",\"doi\":\"10.1002/aisy.202300644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although large-scale pretrained convolutinal neural networks (CNN) models have shown impressive transfer learning capabilities, they come with drawbacks such as high energy consumption and computational cost due to their potential redundant parameters. This study presents an innovative weight-level pruning technique that mitigates the challenges of overparameterization, and subsequently minimizes the electricity usage of such large deep learning models. The method focuses on removing redundant parameters while upholding model accuracy. This methodology is applied to classify <i>Eimeria</i> species parasites from fowls and rabbits. By leveraging a set of 27 pretrained CNN models with a number of parameters between 3.0M and 118.5M, the framework has identified a 4.8M-parameter model with the highest accuracy for both animals. The model is then subjected to a systematic pruning process, resulting in an 8% reduction in parameters and a 421M reduction in floating point operations while maintaining the same classification accuracy for both fowls and rabbits. Furthermore, unlike the existing literature where two separate models are created for rabbits and fowls, this article presents a combined model with 17 classes. This approach has resulted in a CNN model with nearly 50% reduced parameter size while retaining the same accuracy of over 90%.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300644\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Green AI-Driven Concept for the Development of Cost-Effective and Energy-Efficient Deep Learning Method: Application in the Detection of Eimeria Parasites as a Case Study
Although large-scale pretrained convolutinal neural networks (CNN) models have shown impressive transfer learning capabilities, they come with drawbacks such as high energy consumption and computational cost due to their potential redundant parameters. This study presents an innovative weight-level pruning technique that mitigates the challenges of overparameterization, and subsequently minimizes the electricity usage of such large deep learning models. The method focuses on removing redundant parameters while upholding model accuracy. This methodology is applied to classify Eimeria species parasites from fowls and rabbits. By leveraging a set of 27 pretrained CNN models with a number of parameters between 3.0M and 118.5M, the framework has identified a 4.8M-parameter model with the highest accuracy for both animals. The model is then subjected to a systematic pruning process, resulting in an 8% reduction in parameters and a 421M reduction in floating point operations while maintaining the same classification accuracy for both fowls and rabbits. Furthermore, unlike the existing literature where two separate models are created for rabbits and fowls, this article presents a combined model with 17 classes. This approach has resulted in a CNN model with nearly 50% reduced parameter size while retaining the same accuracy of over 90%.