Seungbae Oh, Xue Dong, Chaeheon Woo, Xiaojie Zhang, Yeongjin Kim, Kyung Hwan Choi, Bom Lee, Ji-Hee Kim, Jinsu Kang, Hyeon-Seok Bang, Jiho Jeon, Hyung-Suk Oh, Hak Ki Yu, Junyoung Mun, Jae-Young Choi
{"title":"将均匀的分子级碳精确集成到多孔二氧化硅框架中,为高性能锂离子电池提供协同电化学活化功能","authors":"Seungbae Oh, Xue Dong, Chaeheon Woo, Xiaojie Zhang, Yeongjin Kim, Kyung Hwan Choi, Bom Lee, Ji-Hee Kim, Jinsu Kang, Hyeon-Seok Bang, Jiho Jeon, Hyung-Suk Oh, Hak Ki Yu, Junyoung Mun, Jae-Young Choi","doi":"10.1002/eom2.12469","DOIUrl":null,"url":null,"abstract":"<p>The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO<sub>2</sub>@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO<sub>2</sub>@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiO<sub><i>x</i></sub> phases, which balances ion and charge transfer for electrochemical activation of SiO<sub>2</sub>@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO<sub>2</sub>-based advanced anode materials with enhanced electrochemical performances.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12469","citationCount":"0","resultStr":"{\"title\":\"Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries\",\"authors\":\"Seungbae Oh, Xue Dong, Chaeheon Woo, Xiaojie Zhang, Yeongjin Kim, Kyung Hwan Choi, Bom Lee, Ji-Hee Kim, Jinsu Kang, Hyeon-Seok Bang, Jiho Jeon, Hyung-Suk Oh, Hak Ki Yu, Junyoung Mun, Jae-Young Choi\",\"doi\":\"10.1002/eom2.12469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO<sub>2</sub>@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO<sub>2</sub>@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiO<sub><i>x</i></sub> phases, which balances ion and charge transfer for electrochemical activation of SiO<sub>2</sub>@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO<sub>2</sub>-based advanced anode materials with enhanced electrochemical performances.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12469\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries
The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO2 nanoparticles (SiO2@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO2@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO2@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiOx phases, which balances ion and charge transfer for electrochemical activation of SiO2@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO2-based advanced anode materials with enhanced electrochemical performances.