利用全柔性纤维磁电复合材料中的诱导磁致伸缩效应改进杂散磁能收集技术

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-11 DOI:10.1021/acsaelm.4c00825
Durga Prasad Pabba, J. Kaarthik, Nayak Ram and Annapureddy Venkateswarlu*, 
{"title":"利用全柔性纤维磁电复合材料中的诱导磁致伸缩效应改进杂散磁能收集技术","authors":"Durga Prasad Pabba,&nbsp;J. Kaarthik,&nbsp;Nayak Ram and Annapureddy Venkateswarlu*,&nbsp;","doi":"10.1021/acsaelm.4c00825","DOIUrl":null,"url":null,"abstract":"<p >Combining the effects of magnetostrictive and piezoelectric, magneto-mechano-electrical (MME) generators have been developed to accomplish stray magnetic field harvesting for noncontact energy harvesting applications. The highly magnetostrictive interaction boosted the output performance of the MME generator in response to external magnetic stimulation. In this study, MME generators were developed using piezoelectric-ferromagnetic (PVDF/BZT-BCT-ferrite) electrospun fiber-based composites. The autocombustion process was employed to prepare nickel ferrite and cobalt ferrite nanoparticles with average crystallite sizes of 35 and 40 nm, respectively. XRD and FTIR analysis of fiber-based composites revealed a significant increase in the electroactive β-phase due to the electrostatic interaction between the inorganic materials and PVDF. FESEM micrographs demonstrated the formation of homogeneous bead-free fibers, whereas EDS proved the elemental presence of BCT-BZT and ferrite in the composite fibers. We optimized the magnetic field conversion efficiency in the MME generator by varying the magnetostrictive material through direct particle–particle connection in the fiber composite and then layer-by-layer connection. The optimized MME nanogenerator effectively harvests magnetic fields, yielding an output voltage and power density of 6.2 V and 88.7 μW/m<sup>2</sup>, respectively, under an AC magnetic field of 6 Oe at 50 Hz. This represents a significant improvement of 385% compared to conventional generators. This MME device shows great promise for providing substantial power to implantable wireless sensor network devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the Induced Magnetostrictive Effect in Fully Flexible Fiber-Based Magnetoelectric Composites for Improved Stray Magnetic Energy Harvesting\",\"authors\":\"Durga Prasad Pabba,&nbsp;J. Kaarthik,&nbsp;Nayak Ram and Annapureddy Venkateswarlu*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c00825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Combining the effects of magnetostrictive and piezoelectric, magneto-mechano-electrical (MME) generators have been developed to accomplish stray magnetic field harvesting for noncontact energy harvesting applications. The highly magnetostrictive interaction boosted the output performance of the MME generator in response to external magnetic stimulation. In this study, MME generators were developed using piezoelectric-ferromagnetic (PVDF/BZT-BCT-ferrite) electrospun fiber-based composites. The autocombustion process was employed to prepare nickel ferrite and cobalt ferrite nanoparticles with average crystallite sizes of 35 and 40 nm, respectively. XRD and FTIR analysis of fiber-based composites revealed a significant increase in the electroactive β-phase due to the electrostatic interaction between the inorganic materials and PVDF. FESEM micrographs demonstrated the formation of homogeneous bead-free fibers, whereas EDS proved the elemental presence of BCT-BZT and ferrite in the composite fibers. We optimized the magnetic field conversion efficiency in the MME generator by varying the magnetostrictive material through direct particle–particle connection in the fiber composite and then layer-by-layer connection. The optimized MME nanogenerator effectively harvests magnetic fields, yielding an output voltage and power density of 6.2 V and 88.7 μW/m<sup>2</sup>, respectively, under an AC magnetic field of 6 Oe at 50 Hz. This represents a significant improvement of 385% compared to conventional generators. This MME device shows great promise for providing substantial power to implantable wireless sensor network devices.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c00825\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00825","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

磁-机-电(MME)发生器结合了磁致伸缩效应和压电效应,可完成杂散磁场采集,用于非接触式能量采集应用。高磁致伸缩相互作用提高了磁-机-电(MME)发生器响应外部磁刺激的输出性能。本研究利用压电铁磁(PVDF/BZT-BCT-铁氧体)电纺纤维基复合材料开发了 MME 发生器。采用自燃工艺制备了镍铁氧体和钴铁氧体纳米粒子,其平均结晶尺寸分别为 35 纳米和 40 纳米。纤维基复合材料的 XRD 和 FTIR 分析表明,由于无机材料与 PVDF 之间的静电作用,电活性 β 相显著增加。FESEM 显微图片显示形成了均匀的无珠纤维,而 EDS 则证明了复合纤维中 BCT-BZT 和铁氧体元素的存在。我们通过改变纤维复合材料中的磁致伸缩材料来优化 MME 发电机的磁场转换效率。优化后的 MME 纳米发电机能有效收集磁场,在 6 Oe、50 Hz 的交流磁场下,输出电压和功率密度分别为 6.2 V 和 88.7 μW/m2。与传统发电机相比,功率密度大幅提高了 385%。这种 MME 设备在为植入式无线传感器网络设备提供大量电力方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing the Induced Magnetostrictive Effect in Fully Flexible Fiber-Based Magnetoelectric Composites for Improved Stray Magnetic Energy Harvesting

Combining the effects of magnetostrictive and piezoelectric, magneto-mechano-electrical (MME) generators have been developed to accomplish stray magnetic field harvesting for noncontact energy harvesting applications. The highly magnetostrictive interaction boosted the output performance of the MME generator in response to external magnetic stimulation. In this study, MME generators were developed using piezoelectric-ferromagnetic (PVDF/BZT-BCT-ferrite) electrospun fiber-based composites. The autocombustion process was employed to prepare nickel ferrite and cobalt ferrite nanoparticles with average crystallite sizes of 35 and 40 nm, respectively. XRD and FTIR analysis of fiber-based composites revealed a significant increase in the electroactive β-phase due to the electrostatic interaction between the inorganic materials and PVDF. FESEM micrographs demonstrated the formation of homogeneous bead-free fibers, whereas EDS proved the elemental presence of BCT-BZT and ferrite in the composite fibers. We optimized the magnetic field conversion efficiency in the MME generator by varying the magnetostrictive material through direct particle–particle connection in the fiber composite and then layer-by-layer connection. The optimized MME nanogenerator effectively harvests magnetic fields, yielding an output voltage and power density of 6.2 V and 88.7 μW/m2, respectively, under an AC magnetic field of 6 Oe at 50 Hz. This represents a significant improvement of 385% compared to conventional generators. This MME device shows great promise for providing substantial power to implantable wireless sensor network devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1