{"title":"地球物理和天体物理现象的液态金属实验","authors":"Frank Stefani","doi":"10.1038/s42254-024-00724-1","DOIUrl":null,"url":null,"abstract":"Recent decades have seen enormous progress in the experimental investigation of fundamental processes that are relevant to geophysical and astrophysical fluid dynamics. Liquid metals have proven particularly suited for such studies, partly owing to their small Prandtl numbers that are comparable to those in planetary cores and stellar convection zones, partly owing to their high electrical conductivity that allows the study of various magnetohydrodynamic phenomena. After introducing the theoretical basics and the key dimensionless parameters, we discuss some of the most important liquid-metal experiments on Rayleigh–Bénard convection, Alfvén waves, magnetically triggered flow instabilities such as the magnetorotational and Tayler instability, and the dynamo effect. Finally, we summarize what has been learned so far from those recent experiments and what could be expected from future ones. The understanding of fluid flows and their interaction with magnetic fields in planetary and stellar cores or accretion disks represents a challenge for geophysical and astrophysical research. This Review covers recent liquid-metal experiments on the underlying processes, such as convection, Alfvén waves, the magnetorotational instability and the dynamo effect.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 7","pages":"409-425"},"PeriodicalIF":44.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-metal experiments on geophysical and astrophysical phenomena\",\"authors\":\"Frank Stefani\",\"doi\":\"10.1038/s42254-024-00724-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent decades have seen enormous progress in the experimental investigation of fundamental processes that are relevant to geophysical and astrophysical fluid dynamics. Liquid metals have proven particularly suited for such studies, partly owing to their small Prandtl numbers that are comparable to those in planetary cores and stellar convection zones, partly owing to their high electrical conductivity that allows the study of various magnetohydrodynamic phenomena. After introducing the theoretical basics and the key dimensionless parameters, we discuss some of the most important liquid-metal experiments on Rayleigh–Bénard convection, Alfvén waves, magnetically triggered flow instabilities such as the magnetorotational and Tayler instability, and the dynamo effect. Finally, we summarize what has been learned so far from those recent experiments and what could be expected from future ones. The understanding of fluid flows and their interaction with magnetic fields in planetary and stellar cores or accretion disks represents a challenge for geophysical and astrophysical research. This Review covers recent liquid-metal experiments on the underlying processes, such as convection, Alfvén waves, the magnetorotational instability and the dynamo effect.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"6 7\",\"pages\":\"409-425\"},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00724-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00724-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Liquid-metal experiments on geophysical and astrophysical phenomena
Recent decades have seen enormous progress in the experimental investigation of fundamental processes that are relevant to geophysical and astrophysical fluid dynamics. Liquid metals have proven particularly suited for such studies, partly owing to their small Prandtl numbers that are comparable to those in planetary cores and stellar convection zones, partly owing to their high electrical conductivity that allows the study of various magnetohydrodynamic phenomena. After introducing the theoretical basics and the key dimensionless parameters, we discuss some of the most important liquid-metal experiments on Rayleigh–Bénard convection, Alfvén waves, magnetically triggered flow instabilities such as the magnetorotational and Tayler instability, and the dynamo effect. Finally, we summarize what has been learned so far from those recent experiments and what could be expected from future ones. The understanding of fluid flows and their interaction with magnetic fields in planetary and stellar cores or accretion disks represents a challenge for geophysical and astrophysical research. This Review covers recent liquid-metal experiments on the underlying processes, such as convection, Alfvén waves, the magnetorotational instability and the dynamo effect.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.