通过蒸发诱导悬浮自组装探索 Imogolite 纳米管的胶体相变

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-06-10 DOI:10.1002/admi.202400323
Claire Hotton, T. Bizien, Brigitte Pansu, Cyrille Hamon, E. Paineau
{"title":"通过蒸发诱导悬浮自组装探索 Imogolite 纳米管的胶体相变","authors":"Claire Hotton, T. Bizien, Brigitte Pansu, Cyrille Hamon, E. Paineau","doi":"10.1002/admi.202400323","DOIUrl":null,"url":null,"abstract":"Evaporation‐induced self‐assembly (EISA) is a versatile method for generating organized superstructures from colloidal particles, offering diverse design possibilities through the manipulation of colloid size, shape, substrate nature, and environmental conditions. While some work highlighted the potential of EISA to investigate phase transitions of inorganic liquid crystals, the influence of sample environment to determine their phase diagrams is often overlooked. In this work, the self‐assembly of lyotropic liquid crystals is compared by EISA on substrates, and by acoustic levitation (absence of substrate). The focus is on imogolite nanotubes, a model colloidal system of 1D charged objects, due to their tunable morphology and rich liquid‐crystalline phase behavior. It demonstrates the feasibility to obtain phase transitions in levitating droplets and on soft hydrophobic substrates, whereas self‐assembly is limited on rigid hydrophilic supports. Moreover, the aspect ratio of the nanotubes proves to be a pivotal factor, influencing both transitions and the resulting materials shape and surface. Besides material shaping, acoustic levitation emerges as a promising method for studying phase transitions by EISA, toward the rapid establishment of phase diagrams from diluted to highly concentrated states using a limited volume of sample.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Colloidal Phase Transitions of Imogolite Nanotubes by Evaporation Induced Self‐Assembly in Levitation\",\"authors\":\"Claire Hotton, T. Bizien, Brigitte Pansu, Cyrille Hamon, E. Paineau\",\"doi\":\"10.1002/admi.202400323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaporation‐induced self‐assembly (EISA) is a versatile method for generating organized superstructures from colloidal particles, offering diverse design possibilities through the manipulation of colloid size, shape, substrate nature, and environmental conditions. While some work highlighted the potential of EISA to investigate phase transitions of inorganic liquid crystals, the influence of sample environment to determine their phase diagrams is often overlooked. In this work, the self‐assembly of lyotropic liquid crystals is compared by EISA on substrates, and by acoustic levitation (absence of substrate). The focus is on imogolite nanotubes, a model colloidal system of 1D charged objects, due to their tunable morphology and rich liquid‐crystalline phase behavior. It demonstrates the feasibility to obtain phase transitions in levitating droplets and on soft hydrophobic substrates, whereas self‐assembly is limited on rigid hydrophilic supports. Moreover, the aspect ratio of the nanotubes proves to be a pivotal factor, influencing both transitions and the resulting materials shape and surface. Besides material shaping, acoustic levitation emerges as a promising method for studying phase transitions by EISA, toward the rapid establishment of phase diagrams from diluted to highly concentrated states using a limited volume of sample.\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/admi.202400323\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400323","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蒸发诱导自组装(EISA)是一种从胶体颗粒生成有组织超结构的多功能方法,通过操纵胶体大小、形状、基底性质和环境条件,提供了多种设计可能性。虽然有些研究强调了 EISA 在研究无机液晶相变方面的潜力,但往往忽略了样品环境对确定其相图的影响。在这项工作中,通过 EISA 在基底上和声学悬浮(无基底)对各向同性液晶的自组装进行了比较。研究重点是咪唑纳米管,它是一维带电物体胶体系统的典范,具有可调形态和丰富的液晶相行为。它证明了在悬浮液滴和软性疏水基底上获得相变的可行性,而在刚性亲水基底上的自组装则受到限制。此外,纳米管的长宽比被证明是一个关键因素,会影响相变以及由此产生的材料形状和表面。除了材料塑形外,声学悬浮也是利用 EISA 研究相变的一种很有前途的方法,它可以利用有限体积的样品快速建立从稀释状态到高浓度状态的相图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Colloidal Phase Transitions of Imogolite Nanotubes by Evaporation Induced Self‐Assembly in Levitation
Evaporation‐induced self‐assembly (EISA) is a versatile method for generating organized superstructures from colloidal particles, offering diverse design possibilities through the manipulation of colloid size, shape, substrate nature, and environmental conditions. While some work highlighted the potential of EISA to investigate phase transitions of inorganic liquid crystals, the influence of sample environment to determine their phase diagrams is often overlooked. In this work, the self‐assembly of lyotropic liquid crystals is compared by EISA on substrates, and by acoustic levitation (absence of substrate). The focus is on imogolite nanotubes, a model colloidal system of 1D charged objects, due to their tunable morphology and rich liquid‐crystalline phase behavior. It demonstrates the feasibility to obtain phase transitions in levitating droplets and on soft hydrophobic substrates, whereas self‐assembly is limited on rigid hydrophilic supports. Moreover, the aspect ratio of the nanotubes proves to be a pivotal factor, influencing both transitions and the resulting materials shape and surface. Besides material shaping, acoustic levitation emerges as a promising method for studying phase transitions by EISA, toward the rapid establishment of phase diagrams from diluted to highly concentrated states using a limited volume of sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Masthead: (Adv. Mater. Interfaces 24/2024) Metal Painting by Plasma Jet (Adv. Mater. Interfaces 24/2024) Growth-Induced Extinction Development of Gold Nanoclusters as Signal Transducers for Quantitative Immunoassays (Adv. Mater. Interfaces 24/2024) Masthead: (Adv. Mater. Interfaces 24/2024) A Thioether-Bridging Surface Modification of Polymeric Microspheres Offers Nonbiological Protein A-Mimetic Affinity for IgG (Adv. Mater. Interfaces 23/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1