通过界面电子调制增强驱动力:通过 Co-MOF@Fe2O3 p-n 异质结进行部分硫化以实现水分离

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-06-10 DOI:10.1021/acsmaterialslett.4c00566
Cheng-Long Peng, Lin-Yan Zhang, Na Zhang*, Jing Guo, Jian-Yong Zhang, He Lin, Zhen-Jiang Liu* and Min Zhou*, 
{"title":"通过界面电子调制增强驱动力:通过 Co-MOF@Fe2O3 p-n 异质结进行部分硫化以实现水分离","authors":"Cheng-Long Peng,&nbsp;Lin-Yan Zhang,&nbsp;Na Zhang*,&nbsp;Jing Guo,&nbsp;Jian-Yong Zhang,&nbsp;He Lin,&nbsp;Zhen-Jiang Liu* and Min Zhou*,&nbsp;","doi":"10.1021/acsmaterialslett.4c00566","DOIUrl":null,"url":null,"abstract":"<p >Herein, a p–n junction composed of cobalt-based metal–organic frameworks (Co-MOFs) and Fe<sub>2</sub>O<sub>3</sub> has been designed to provide a strong built-in electric field (B-IEF) to enhance electron transport and facilitate intermediate adsorption of oxygen during the oxygen evolution reaction. Meanwhile, partial sulfurization surface modulation is envisioned to achieve a switchable phase transformation, and the B-IEF has been further broadened to 1.535 V. The Co-MOF@Fe<sub>2</sub>O<sub>3</sub>–S bearing partial sulfurization delivered a lower overpotential of 300 mV at 50 mA cm<sup>–2</sup>, a modest Tafel slope of 83.8 mV dec<sup>–1</sup>, and remarkable long-term stability. Density functional theory calculations and in situ Raman analysis have indicated charge redistribution, accelerated electron transfer and OH<sup>–</sup> ion diffusion, and the modest adsorption/desorption energy of oxygen-containing intermediates. This interfacial p–n heterojunction and sulfurization treatment without losing the microstructure lays the foundation for the production of clean energy.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Electron Modulation to Boost Driving Force: Partial Sulfurization over Co-MOF@Fe2O3 p–n Heterojunctions for Water Splitting\",\"authors\":\"Cheng-Long Peng,&nbsp;Lin-Yan Zhang,&nbsp;Na Zhang*,&nbsp;Jing Guo,&nbsp;Jian-Yong Zhang,&nbsp;He Lin,&nbsp;Zhen-Jiang Liu* and Min Zhou*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c00566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, a p–n junction composed of cobalt-based metal–organic frameworks (Co-MOFs) and Fe<sub>2</sub>O<sub>3</sub> has been designed to provide a strong built-in electric field (B-IEF) to enhance electron transport and facilitate intermediate adsorption of oxygen during the oxygen evolution reaction. Meanwhile, partial sulfurization surface modulation is envisioned to achieve a switchable phase transformation, and the B-IEF has been further broadened to 1.535 V. The Co-MOF@Fe<sub>2</sub>O<sub>3</sub>–S bearing partial sulfurization delivered a lower overpotential of 300 mV at 50 mA cm<sup>–2</sup>, a modest Tafel slope of 83.8 mV dec<sup>–1</sup>, and remarkable long-term stability. Density functional theory calculations and in situ Raman analysis have indicated charge redistribution, accelerated electron transfer and OH<sup>–</sup> ion diffusion, and the modest adsorption/desorption energy of oxygen-containing intermediates. This interfacial p–n heterojunction and sulfurization treatment without losing the microstructure lays the foundation for the production of clean energy.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00566\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们设计了一个由钴基金属有机框架(Co-MOFs)和 Fe2O3 组成的 p-n 结,以提供一个强内置电场(B-IEF)来增强电子传输,并促进氧进化反应过程中氧的中间吸附。Co-MOF@Fe2O3-S 在 50 mA cm-2 时的过电位较低,为 300 mV,塔菲尔斜率为 83.8 mV dec-1,并且具有显著的长期稳定性。密度泛函理论计算和原位拉曼分析表明了电荷的重新分布、电子转移和 OH 离子扩散的加速以及含氧中间产物的适度吸附/解吸能。这种界面 p-n 异质结和硫化处理不会失去微观结构,为生产清洁能源奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial Electron Modulation to Boost Driving Force: Partial Sulfurization over Co-MOF@Fe2O3 p–n Heterojunctions for Water Splitting

Herein, a p–n junction composed of cobalt-based metal–organic frameworks (Co-MOFs) and Fe2O3 has been designed to provide a strong built-in electric field (B-IEF) to enhance electron transport and facilitate intermediate adsorption of oxygen during the oxygen evolution reaction. Meanwhile, partial sulfurization surface modulation is envisioned to achieve a switchable phase transformation, and the B-IEF has been further broadened to 1.535 V. The Co-MOF@Fe2O3–S bearing partial sulfurization delivered a lower overpotential of 300 mV at 50 mA cm–2, a modest Tafel slope of 83.8 mV dec–1, and remarkable long-term stability. Density functional theory calculations and in situ Raman analysis have indicated charge redistribution, accelerated electron transfer and OH ion diffusion, and the modest adsorption/desorption energy of oxygen-containing intermediates. This interfacial p–n heterojunction and sulfurization treatment without losing the microstructure lays the foundation for the production of clean energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Tailoring Surface Electronic Structure of Spinel Co3O4 Oxide via Fe and Cu Substitution for Enhanced Oxygen Evolution Reaction Magnetic Microactuators Based on Particle Jamming Novel NIR-II 3,5-Julolidinyl aza-BODIPY for Photothermal Therapy of Gliomas Stem Cells by Brain Stereotactic Injection New Concept for HLCT Emitter: Acceptor Molecule in Exciplex System for Highly Efficient and Extremely Low-Efficiency Roll-Off Solution-Processed OLED Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1