基于集合级联森林的多药物反应和协同作用预测框架

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-06-09 DOI:10.1002/aisy.202400180
Ruijiang Li, Binsheng Sui, Dongjin Leng, Song He, Kunhong Liu, Xiaochen Bo
{"title":"基于集合级联森林的多药物反应和协同作用预测框架","authors":"Ruijiang Li,&nbsp;Binsheng Sui,&nbsp;Dongjin Leng,&nbsp;Song He,&nbsp;Kunhong Liu,&nbsp;Xiaochen Bo","doi":"10.1002/aisy.202400180","DOIUrl":null,"url":null,"abstract":"<p>The obscure drug response continues to be a limiting factor for accurate cures for cancer. Next generation sequencing technologies have propelled the pharmacogenomic studies with characterized large panels of cancer cell line at multi-omics level. However, the sufficient integration of the multi-omics data and the efficient prediction for drug response and synergy still remain a challenge. To address these problems, ECFD is designed, an ensemble cascade forest-based framework that predicts drug response and synergy using five types of omics data. Experimental results show the significant advantages of the ECFD model over existing models. The best integration of feature extraction is determined and the superiorities of robust stability in the face of new and small samples are highlighted. In addition, the methodological framework highlights the explainability of the model, the mechanisms of drug resistance and drug combination treatment strategies based on explainable analyses and biological networks. In sum, ECFD may facilitate the evaluation of drug response and speculation of potential synergy therapies in personalized and precision treatment.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400180","citationCount":"0","resultStr":"{\"title\":\"An Ensemble Cascade Forest-Based Framework for Multi-Omics Drug Response and Synergy Prediction\",\"authors\":\"Ruijiang Li,&nbsp;Binsheng Sui,&nbsp;Dongjin Leng,&nbsp;Song He,&nbsp;Kunhong Liu,&nbsp;Xiaochen Bo\",\"doi\":\"10.1002/aisy.202400180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The obscure drug response continues to be a limiting factor for accurate cures for cancer. Next generation sequencing technologies have propelled the pharmacogenomic studies with characterized large panels of cancer cell line at multi-omics level. However, the sufficient integration of the multi-omics data and the efficient prediction for drug response and synergy still remain a challenge. To address these problems, ECFD is designed, an ensemble cascade forest-based framework that predicts drug response and synergy using five types of omics data. Experimental results show the significant advantages of the ECFD model over existing models. The best integration of feature extraction is determined and the superiorities of robust stability in the face of new and small samples are highlighted. In addition, the methodological framework highlights the explainability of the model, the mechanisms of drug resistance and drug combination treatment strategies based on explainable analyses and biological networks. In sum, ECFD may facilitate the evaluation of drug response and speculation of potential synergy therapies in personalized and precision treatment.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

不明显的药物反应仍然是准确治愈癌症的限制因素。下一代测序技术推动了药物基因组学研究,在多组学水平上鉴定了大量癌细胞系。然而,如何充分整合多组学数据并有效预测药物反应和协同作用仍是一个挑战。为了解决这些问题,我们设计了 ECFD,这是一种基于级联森林的集合框架,可以利用五种组学数据预测药物反应和协同作用。实验结果表明,与现有模型相比,ECFD 模型具有显著优势。确定了特征提取的最佳整合方式,并强调了面对新样本和小样本时稳健稳定性的优越性。此外,该方法框架还强调了模型的可解释性、耐药性机制以及基于可解释分析和生物网络的药物组合治疗策略。总之,ECFD 可促进个性化和精准治疗中的药物反应评估和潜在协同疗法的推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Ensemble Cascade Forest-Based Framework for Multi-Omics Drug Response and Synergy Prediction

The obscure drug response continues to be a limiting factor for accurate cures for cancer. Next generation sequencing technologies have propelled the pharmacogenomic studies with characterized large panels of cancer cell line at multi-omics level. However, the sufficient integration of the multi-omics data and the efficient prediction for drug response and synergy still remain a challenge. To address these problems, ECFD is designed, an ensemble cascade forest-based framework that predicts drug response and synergy using five types of omics data. Experimental results show the significant advantages of the ECFD model over existing models. The best integration of feature extraction is determined and the superiorities of robust stability in the face of new and small samples are highlighted. In addition, the methodological framework highlights the explainability of the model, the mechanisms of drug resistance and drug combination treatment strategies based on explainable analyses and biological networks. In sum, ECFD may facilitate the evaluation of drug response and speculation of potential synergy therapies in personalized and precision treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1