基于 BERT 预训练模型的语义代码克隆检测

Zekai Cheng, Jiahao Hu, Yongkang Guo, Xiaoke Li
{"title":"基于 BERT 预训练模型的语义代码克隆检测","authors":"Zekai Cheng, Jiahao Hu, Yongkang Guo, Xiaoke Li","doi":"10.1117/12.3031928","DOIUrl":null,"url":null,"abstract":"Clone detection of source code is one of the most fundamental software engineering techniques. Although intensive research has been conducted in the past few years, it has more often addressed syntactic code clone, and there are still a number of problems in detecting semantic code clone. In this paper, we propose an approach that uses C/C++ code to finetune the Bert pre-training model so that it better understands the syntactic and semantic features of the C/C++ code, thus enabling better source code similarity evaluation. We evaluated our approach on a large C/C++ code clone dataset and the results show that our approach achieves excellent semantic code clone detection.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":" 44","pages":"131711K - 131711K-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic code clone detection based on BERT pre-trained model\",\"authors\":\"Zekai Cheng, Jiahao Hu, Yongkang Guo, Xiaoke Li\",\"doi\":\"10.1117/12.3031928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clone detection of source code is one of the most fundamental software engineering techniques. Although intensive research has been conducted in the past few years, it has more often addressed syntactic code clone, and there are still a number of problems in detecting semantic code clone. In this paper, we propose an approach that uses C/C++ code to finetune the Bert pre-training model so that it better understands the syntactic and semantic features of the C/C++ code, thus enabling better source code similarity evaluation. We evaluated our approach on a large C/C++ code clone dataset and the results show that our approach achieves excellent semantic code clone detection.\",\"PeriodicalId\":342847,\"journal\":{\"name\":\"International Conference on Algorithms, Microchips and Network Applications\",\"volume\":\" 44\",\"pages\":\"131711K - 131711K-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithms, Microchips and Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3031928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3031928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

源代码克隆检测是最基本的软件工程技术之一。尽管在过去几年中进行了大量研究,但更多的是针对语法代码克隆,而在检测语义代码克隆方面仍存在一些问题。在本文中,我们提出了一种利用 C/C++ 代码来微调 Bert 预训练模型的方法,使其更好地理解 C/C++ 代码的语法和语义特征,从而实现更好的源代码相似性评估。我们在一个大型 C/C++ 代码克隆数据集上评估了我们的方法,结果表明我们的方法实现了出色的语义代码克隆检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic code clone detection based on BERT pre-trained model
Clone detection of source code is one of the most fundamental software engineering techniques. Although intensive research has been conducted in the past few years, it has more often addressed syntactic code clone, and there are still a number of problems in detecting semantic code clone. In this paper, we propose an approach that uses C/C++ code to finetune the Bert pre-training model so that it better understands the syntactic and semantic features of the C/C++ code, thus enabling better source code similarity evaluation. We evaluated our approach on a large C/C++ code clone dataset and the results show that our approach achieves excellent semantic code clone detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deep-learning-based chip design enabling algorithmic and hardware architecture convergence Fusing lightweight Retinaface network for fatigue driving detection A local flooding-based survivable routing algorithm for mega-constellations networks with inclined orbits A privacy preserving carbon quota trading and auditing method DOA estimation based on mode and maximum eigenvector algorithm with reverberation environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1