{"title":"基于人工智能安全检测算法的多源异构数据结构分析技术研究","authors":"Chunyan Yang, Songming Han, Jieke Lu, Shaofeng Ming, Wei Zhang","doi":"10.1117/12.3032167","DOIUrl":null,"url":null,"abstract":"The relationships between multi-source heterogeneous data and elements in the field of artificial intelligence security are integrated and analyzed in this paper, including attack information, data information, and other security data. Targeting the associated complex entity concepts that existed in the construction of the artificial intelligence security knowledge graph, the ontology structure is divided into theory layer, problem layer, and measure layer, making the artificial intelligence security ontology more diverse and expandable. The addition of the measure layer provides more accurate security decision-making reasoning for the subsequent knowledge inference stage.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":" 43","pages":"131710M - 131710M-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on multi-source heterogeneous data structure analysis technique based on AI security detection algorithm\",\"authors\":\"Chunyan Yang, Songming Han, Jieke Lu, Shaofeng Ming, Wei Zhang\",\"doi\":\"10.1117/12.3032167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationships between multi-source heterogeneous data and elements in the field of artificial intelligence security are integrated and analyzed in this paper, including attack information, data information, and other security data. Targeting the associated complex entity concepts that existed in the construction of the artificial intelligence security knowledge graph, the ontology structure is divided into theory layer, problem layer, and measure layer, making the artificial intelligence security ontology more diverse and expandable. The addition of the measure layer provides more accurate security decision-making reasoning for the subsequent knowledge inference stage.\",\"PeriodicalId\":342847,\"journal\":{\"name\":\"International Conference on Algorithms, Microchips and Network Applications\",\"volume\":\" 43\",\"pages\":\"131710M - 131710M-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithms, Microchips and Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3032167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3032167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on multi-source heterogeneous data structure analysis technique based on AI security detection algorithm
The relationships between multi-source heterogeneous data and elements in the field of artificial intelligence security are integrated and analyzed in this paper, including attack information, data information, and other security data. Targeting the associated complex entity concepts that existed in the construction of the artificial intelligence security knowledge graph, the ontology structure is divided into theory layer, problem layer, and measure layer, making the artificial intelligence security ontology more diverse and expandable. The addition of the measure layer provides more accurate security decision-making reasoning for the subsequent knowledge inference stage.