不同硼含量的铁-铬-钛涂层的侵蚀磨损研究

R. Sharma, Shiv Ranjan Kumar
{"title":"不同硼含量的铁-铬-钛涂层的侵蚀磨损研究","authors":"R. Sharma, Shiv Ranjan Kumar","doi":"10.1177/09544089241258842","DOIUrl":null,"url":null,"abstract":"The current work examines the role of the addition of boron on the microstructure, mechanical characteristics, and slurry erosion wear behaviour of the Fe-Cr-Ti alloy. Five distinct Fe-Cr-Ti alloy coatings were prepared, each with varying boron contents (ranging from 0% to 20% by weight), and subsequently applied to 316L steel using the HVOF method. The study encompassed an assessment of mechanical characteristics, including hardness, adhesion tensile strength, and fracture toughness, alongside an examination of slurry erosion wear behavior employing a slurry jet erosion wear tester. X-ray diffraction (XRD) analysis confirmed the emergence of Fe2Br, contributing to the enhancement in the mechanical properties. Remarkably, the addition of 5% boron resulted in a notable improvement in the hardness and adhesion tensile strength by 2.3%, and 9% respectively, but a significant improvement in fracture toughness by 45%. As the impact speed increased from 35 m/sec to 70 m/sec and the slurry concentration increased from 10 weight per cent to 20 weight per cent, and wear rate increased by 51% and 37.7%, respectively. Conversely, an elevation in the impingement angle between 30° and 60° led to a 69.5% increase in wear rate, whereas between 60° and 90°, it resulted in a reduction of 19.3%.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erosion wear investigation of Fe-Cr-Ti coating with varying boron content\",\"authors\":\"R. Sharma, Shiv Ranjan Kumar\",\"doi\":\"10.1177/09544089241258842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work examines the role of the addition of boron on the microstructure, mechanical characteristics, and slurry erosion wear behaviour of the Fe-Cr-Ti alloy. Five distinct Fe-Cr-Ti alloy coatings were prepared, each with varying boron contents (ranging from 0% to 20% by weight), and subsequently applied to 316L steel using the HVOF method. The study encompassed an assessment of mechanical characteristics, including hardness, adhesion tensile strength, and fracture toughness, alongside an examination of slurry erosion wear behavior employing a slurry jet erosion wear tester. X-ray diffraction (XRD) analysis confirmed the emergence of Fe2Br, contributing to the enhancement in the mechanical properties. Remarkably, the addition of 5% boron resulted in a notable improvement in the hardness and adhesion tensile strength by 2.3%, and 9% respectively, but a significant improvement in fracture toughness by 45%. As the impact speed increased from 35 m/sec to 70 m/sec and the slurry concentration increased from 10 weight per cent to 20 weight per cent, and wear rate increased by 51% and 37.7%, respectively. Conversely, an elevation in the impingement angle between 30° and 60° led to a 69.5% increase in wear rate, whereas between 60° and 90°, it resulted in a reduction of 19.3%.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241258842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241258842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了硼的添加对 Fe-Cr-Ti 合金的微观结构、机械特性和浆料侵蚀磨损行为的影响。研究人员制备了五种不同的铁-铬-钛合金涂层,每种涂层的硼含量(按重量计从 0% 到 20% 不等)各不相同,随后使用 HVOF 方法将这些涂层应用于 316L 钢。研究包括对硬度、附着拉伸强度和断裂韧性等机械特性的评估,以及使用浆液喷射侵蚀磨损测试仪对浆液侵蚀磨损行为的检测。X 射线衍射 (XRD) 分析证实,Fe2Br 的出现有助于提高机械性能。值得注意的是,添加 5%硼后,硬度和粘附拉伸强度分别显著提高了 2.3% 和 9%,但断裂韧性显著提高了 45%。当冲击速度从 35 米/秒提高到 70 米/秒,浆料浓度从 10% 提高到 20% 时,磨损率分别提高了 51% 和 37.7%。相反,撞击角度在 30° 至 60° 之间时,磨损率增加了 69.5%,而在 60° 至 90° 之间时,磨损率降低了 19.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Erosion wear investigation of Fe-Cr-Ti coating with varying boron content
The current work examines the role of the addition of boron on the microstructure, mechanical characteristics, and slurry erosion wear behaviour of the Fe-Cr-Ti alloy. Five distinct Fe-Cr-Ti alloy coatings were prepared, each with varying boron contents (ranging from 0% to 20% by weight), and subsequently applied to 316L steel using the HVOF method. The study encompassed an assessment of mechanical characteristics, including hardness, adhesion tensile strength, and fracture toughness, alongside an examination of slurry erosion wear behavior employing a slurry jet erosion wear tester. X-ray diffraction (XRD) analysis confirmed the emergence of Fe2Br, contributing to the enhancement in the mechanical properties. Remarkably, the addition of 5% boron resulted in a notable improvement in the hardness and adhesion tensile strength by 2.3%, and 9% respectively, but a significant improvement in fracture toughness by 45%. As the impact speed increased from 35 m/sec to 70 m/sec and the slurry concentration increased from 10 weight per cent to 20 weight per cent, and wear rate increased by 51% and 37.7%, respectively. Conversely, an elevation in the impingement angle between 30° and 60° led to a 69.5% increase in wear rate, whereas between 60° and 90°, it resulted in a reduction of 19.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the effect of bio-silica on the mechanical, microstructural, and corrosion properties of aluminium metal matrix composites Effect of oxyhydrogen as on energy, exergy and sustainability analysis of a diesel engine fueled with palm oil biodiesel Comprehensive investigation of the effect of cryogenic process on machining of Inconel 718 superalloys with uncoated end mills Emerging sustainable techniques in metal cutting to reduce the application of metalworking fluids: A review Effect of infill pattern on the mechanical properties of PLA and ABS specimens prepared by FDM 3D printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1