利用玫瑰葡萄酒工业废水生产黄原胶:黄单胞菌分离物的筛选

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Periodica Polytechnica Chemical Engineering Pub Date : 2024-06-07 DOI:10.3311/ppch.23907
Zorana Trivunović, Ida Zahović, Vanja Vlajkov, M. Grahovac, J. Grahovac, J. Dodić
{"title":"利用玫瑰葡萄酒工业废水生产黄原胶:黄单胞菌分离物的筛选","authors":"Zorana Trivunović, Ida Zahović, Vanja Vlajkov, M. Grahovac, J. Grahovac, J. Dodić","doi":"10.3311/ppch.23907","DOIUrl":null,"url":null,"abstract":"Wastewaters, as the major waste stream of the wine industry, are usually disposed in crude form due to the lack of sustainable treatments, which poses rising environmental threat. Considering biodegradability, nutrients content and other specific characteristics, winery wastewaters are suitable for utilization in xanthan production. In this study, the screening of local wild-type Xanthomonas euvesicatoria strains, isolated from pepper leaves, for xanthan production on medium containing wastewaters from rose wine industry, with initial sugar content of 25 g/L, was performed. Bioprocess success was estimated based on the quantity and quality of separated biopolymer. Additionally, composition of collected wastewaters was determined, and the obtained data indicate the importance of their proper management. The results of screening experiments suggest that applied X. euvesicatoria isolates have a statistically significant effect on xanthan concentration in cultivation medium, its molecular weight, as well as on apparent viscosity of xanthan aqueous solution. According to the obtained results, xanthan concentration varied from 4.0 g/L to 10.0 g/L, while the values of average molecular weight of xanthan and apparent viscosity of its solution ranged from 2.5 ∙ 105 g/mol to 8.5 ∙ 105 g/mol and from 40 mPa ∙ s to 60 mPa ∙ s, respectively. The results from this study suggest that X. euvesicatoria PL2 isolate showed the greatest potential for xanthan production on medium containing wastewaters from rose wine industry because of determined quantity of good-quality biopolymer. Further research is necessary in order to improve proposed bioprocess as sustainable biotechnological solution for winery wastewaters utilization.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Xanthan Production Using Wastewaters from Rose Wine Industry: Screening of Xanthomonas euvesicatoria Isolates\",\"authors\":\"Zorana Trivunović, Ida Zahović, Vanja Vlajkov, M. Grahovac, J. Grahovac, J. Dodić\",\"doi\":\"10.3311/ppch.23907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wastewaters, as the major waste stream of the wine industry, are usually disposed in crude form due to the lack of sustainable treatments, which poses rising environmental threat. Considering biodegradability, nutrients content and other specific characteristics, winery wastewaters are suitable for utilization in xanthan production. In this study, the screening of local wild-type Xanthomonas euvesicatoria strains, isolated from pepper leaves, for xanthan production on medium containing wastewaters from rose wine industry, with initial sugar content of 25 g/L, was performed. Bioprocess success was estimated based on the quantity and quality of separated biopolymer. Additionally, composition of collected wastewaters was determined, and the obtained data indicate the importance of their proper management. The results of screening experiments suggest that applied X. euvesicatoria isolates have a statistically significant effect on xanthan concentration in cultivation medium, its molecular weight, as well as on apparent viscosity of xanthan aqueous solution. According to the obtained results, xanthan concentration varied from 4.0 g/L to 10.0 g/L, while the values of average molecular weight of xanthan and apparent viscosity of its solution ranged from 2.5 ∙ 105 g/mol to 8.5 ∙ 105 g/mol and from 40 mPa ∙ s to 60 mPa ∙ s, respectively. The results from this study suggest that X. euvesicatoria PL2 isolate showed the greatest potential for xanthan production on medium containing wastewaters from rose wine industry because of determined quantity of good-quality biopolymer. Further research is necessary in order to improve proposed bioprocess as sustainable biotechnological solution for winery wastewaters utilization.\",\"PeriodicalId\":19922,\"journal\":{\"name\":\"Periodica Polytechnica Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.23907\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.23907","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

废水作为葡萄酒行业的主要废物流,由于缺乏可持续的处理方法,通常以粗放的形式进行处理,这对环境造成了日益严重的威胁。考虑到生物降解性、营养成分含量和其他具体特征,酿酒废水适合用于黄原胶生产。本研究筛选了从辣椒叶中分离出来的本地野生型黄单胞菌(Xanthomonas euvesicatoria)菌株,在含有玫瑰酒废水(初始含糖量为 25 克/升)的培养基上生产黄原胶。根据分离出的生物聚合物的数量和质量估算了生物工艺的成功率。此外,还测定了所收集废水的成分,所获得的数据表明了对废水进行适当管理的重要性。筛选实验的结果表明,应用的 X. euvesicatoria 分离物对培养基中黄原胶的浓度、分子量以及黄原胶水溶液的表观粘度有显著的统计学影响。结果表明,黄原胶浓度在4.0克/升至10.0克/升之间,黄原胶的平均分子量和溶液表观粘度分别在2.5 ∙ 105克/摩尔至8.5 ∙ 105克/摩尔和40 mPa ∙ s至60 mPa ∙ s之间。研究结果表明,X. euvesicatoria PL2分离株在含有玫瑰酒工业废水的培养基上生产黄原胶的潜力最大,因为它能生产出一定数量的优质生物聚合物。有必要开展进一步的研究,以改进所提出的生物工艺,使其成为利用酿酒废水的可持续生物技术解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Xanthan Production Using Wastewaters from Rose Wine Industry: Screening of Xanthomonas euvesicatoria Isolates
Wastewaters, as the major waste stream of the wine industry, are usually disposed in crude form due to the lack of sustainable treatments, which poses rising environmental threat. Considering biodegradability, nutrients content and other specific characteristics, winery wastewaters are suitable for utilization in xanthan production. In this study, the screening of local wild-type Xanthomonas euvesicatoria strains, isolated from pepper leaves, for xanthan production on medium containing wastewaters from rose wine industry, with initial sugar content of 25 g/L, was performed. Bioprocess success was estimated based on the quantity and quality of separated biopolymer. Additionally, composition of collected wastewaters was determined, and the obtained data indicate the importance of their proper management. The results of screening experiments suggest that applied X. euvesicatoria isolates have a statistically significant effect on xanthan concentration in cultivation medium, its molecular weight, as well as on apparent viscosity of xanthan aqueous solution. According to the obtained results, xanthan concentration varied from 4.0 g/L to 10.0 g/L, while the values of average molecular weight of xanthan and apparent viscosity of its solution ranged from 2.5 ∙ 105 g/mol to 8.5 ∙ 105 g/mol and from 40 mPa ∙ s to 60 mPa ∙ s, respectively. The results from this study suggest that X. euvesicatoria PL2 isolate showed the greatest potential for xanthan production on medium containing wastewaters from rose wine industry because of determined quantity of good-quality biopolymer. Further research is necessary in order to improve proposed bioprocess as sustainable biotechnological solution for winery wastewaters utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
期刊最新文献
The Nanostructure Based SnS Chalcogenide Semiconductor: A Detailed Investigation of Physical and Electrical Properties Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D Metal Oxide-based Nanoparticles for Environmental Remediation: Drawbacks and Opportunities Effect of Nanophotocatalyst WO3 Addition on PVDF Membrane Characteristics and Performance Mathematical-model Analysis of the Potential Exposure to Lead, Zinc and Iron Emissions from Consumption of Premium Motor Spirit in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1