利用迁移学习进行量子启发的阿雷卡努X射线图像分类

Praveen M Naik, Bhawana Rudra
{"title":"利用迁移学习进行量子启发的阿雷卡努X射线图像分类","authors":"Praveen M Naik, Bhawana Rudra","doi":"10.1049/qtc2.12099","DOIUrl":null,"url":null,"abstract":"Arecanut X‐ray images accurately represent their internal structure. A comparative analysis of transfer learning‐based classification, employing both a traditional convolutional neural network (CNN) and an advanced quantum convolutional neural network (QCNN) approach is conducted. The investigation explores various transfer learning models with different sizes to identify the most suitable one for achieving enhanced accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of the 12 transfer learning models tested, 9 exhibit improved classification accuracy when using QCNN models compared to the traditional CNN‐based transfer learning approach. Consequently, the exploration of CNN and QCNN‐based classification reveals that QCNN outperforms traditional CNN models in accuracy within the transfer learning framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for classification operations in this context.","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"31 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum‐inspired Arecanut X‐ray image classification using transfer learning\",\"authors\":\"Praveen M Naik, Bhawana Rudra\",\"doi\":\"10.1049/qtc2.12099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arecanut X‐ray images accurately represent their internal structure. A comparative analysis of transfer learning‐based classification, employing both a traditional convolutional neural network (CNN) and an advanced quantum convolutional neural network (QCNN) approach is conducted. The investigation explores various transfer learning models with different sizes to identify the most suitable one for achieving enhanced accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of the 12 transfer learning models tested, 9 exhibit improved classification accuracy when using QCNN models compared to the traditional CNN‐based transfer learning approach. Consequently, the exploration of CNN and QCNN‐based classification reveals that QCNN outperforms traditional CNN models in accuracy within the transfer learning framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for classification operations in this context.\",\"PeriodicalId\":507937,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"31 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/qtc2.12099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/qtc2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

火麻仁的 X 射线图像能准确反映其内部结构。研究采用传统的卷积神经网络(CNN)和先进的量子卷积神经网络(QCNN)方法,对基于迁移学习的分类进行了比较分析。研究探索了各种不同规模的迁移学习模型,以确定最适合的模型,从而提高准确率。使用 QCNN 方法,规模因子为 2.0 的 Shufflenet 模型分类准确率最高,达到 97.72%,模型大小为 28.40 MB。在测试的 12 个迁移学习模型中,与传统的基于 CNN 的迁移学习方法相比,使用 QCNN 模型时,9 个模型的分类准确率有所提高。因此,对基于 CNN 和 QCNN 的分类方法的探索表明,在迁移学习框架内,QCNN 的准确性优于传统的 CNN 模型。对量子比特的进一步实验表明,在这种情况下,利用 4 个量子比特进行分类操作是最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum‐inspired Arecanut X‐ray image classification using transfer learning
Arecanut X‐ray images accurately represent their internal structure. A comparative analysis of transfer learning‐based classification, employing both a traditional convolutional neural network (CNN) and an advanced quantum convolutional neural network (QCNN) approach is conducted. The investigation explores various transfer learning models with different sizes to identify the most suitable one for achieving enhanced accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of the 12 transfer learning models tested, 9 exhibit improved classification accuracy when using QCNN models compared to the traditional CNN‐based transfer learning approach. Consequently, the exploration of CNN and QCNN‐based classification reveals that QCNN outperforms traditional CNN models in accuracy within the transfer learning framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for classification operations in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced power system fault detection using quantum‐AI and herd immunity quantum‐AI fault detection with herd immunity optimisation in power systems Exploring the fusion of lattice‐based quantum key distribution for secure Internet of Things communications Quantum calculi and formalisms for system and network security: A bibliographic insights and synoptic review Quantum‐inspired Arecanut X‐ray image classification using transfer learning Quantum computing challenges and solutions in software industry—A multivocal literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1