首页 > 最新文献

IET Quantum Communication最新文献

英文 中文
Enhanced power system fault detection using quantum‐AI and herd immunity quantum‐AI fault detection with herd immunity optimisation in power systems 利用量子人工智能和群体抗扰度加强电力系统故障检测 电力系统中的量子人工智能故障检测与群体抗扰度优化
Pub Date : 2024-07-25 DOI: 10.1049/qtc2.12106
M. L. Sworna Kokila, V. Bibin Christopher, G. Ramya
Quantum computing and deep learning have recently gained popularity across various industries, promising revolutionary advancements. The authors introduce QC‐PCSANN‐CHIO‐FD, a novel approach that enhances fault detection in electrical power systems by combining quantum computing, deep learning, and optimisation algorithms. The network, based on a Pyramidal Convolution Shuffle Attention Neural Network (PCSANN) optimised with the Coronavirus Herd Immunity Optimiser, shows promising results. Initially, historical datasets are used for fault detection. Preprocessing, which includes handling missing data and outliers using Adaptive Variational Bayesian Filtering is followed by Dual‐Domain Feature Extraction to extract grayscale statistical features. These features are processed by PCSANN to detect faults. The Coronavirus Herd Immunity Optimisation Algorithm is proposed to optimise PCSANN for precise fault detection. Performance of the proposed QC‐PCSANN‐CHIO‐FD approach attains 24.11%, 28.56% and 22.73% high specificity, 21.89%, 23.04% and 9.51% lower computation Time, 25.289%, 15.35% and 19.91% higher ROC and 8.65%, 13.8%, and 7.15% higher Accuracy compared with existing methods, such as combining deep learning based on quantum computing for electrical power system malfunction diagnosis (QC‐ANN‐FD), electrical power system fault diagnostics using hybrid quantum‐classical deep learning (QC‐CRBM‐FD), applications of machine learning to the identification of power system faults: Recent developments and future directions (QC‐RF‐FD).
量子计算和深度学习最近在各行各业大受欢迎,有望带来革命性的进步。作者介绍了 QC-PCSANN-CHIO-FD,这是一种通过结合量子计算、深度学习和优化算法来增强电力系统故障检测的新方法。该网络以金字塔卷积洗牌注意神经网络(PCSANN)为基础,利用冠状病毒群免疫优化器进行了优化,显示出良好的效果。最初,历史数据集用于故障检测。预处理包括使用自适应变异贝叶斯滤波处理缺失数据和异常值,然后进行双域特征提取,以提取灰度统计特征。PCSANN 对这些特征进行处理,以检测故障。提出了冠状病毒群免疫优化算法来优化 PCSANN,以实现精确的故障检测。提出的 QC-PCSANN-CHIO-FD 方法的性能达到了 24.11%、28.56% 和 22.73% 的高特异性,21.89%、23.04% 和 9.51% 的低计算时间,25.289%、15.35% 和 19.91% 的高 ROC,以及 8.65%、13.8% 和 7.与现有方法相比,准确率提高了 15%,如基于量子计算的深度学习结合用于电力系统故障诊断(QC-ANN-FD)、利用混合量子经典深度学习的电力系统故障诊断(QC-CRBM-FD)、机器学习在电力系统故障识别中的应用等:近期发展和未来方向(QC-RF-FD)。
{"title":"Enhanced power system fault detection using quantum‐AI and herd immunity quantum‐AI fault detection with herd immunity optimisation in power systems","authors":"M. L. Sworna Kokila, V. Bibin Christopher, G. Ramya","doi":"10.1049/qtc2.12106","DOIUrl":"https://doi.org/10.1049/qtc2.12106","url":null,"abstract":"Quantum computing and deep learning have recently gained popularity across various industries, promising revolutionary advancements. The authors introduce QC‐PCSANN‐CHIO‐FD, a novel approach that enhances fault detection in electrical power systems by combining quantum computing, deep learning, and optimisation algorithms. The network, based on a Pyramidal Convolution Shuffle Attention Neural Network (PCSANN) optimised with the Coronavirus Herd Immunity Optimiser, shows promising results. Initially, historical datasets are used for fault detection. Preprocessing, which includes handling missing data and outliers using Adaptive Variational Bayesian Filtering is followed by Dual‐Domain Feature Extraction to extract grayscale statistical features. These features are processed by PCSANN to detect faults. The Coronavirus Herd Immunity Optimisation Algorithm is proposed to optimise PCSANN for precise fault detection. Performance of the proposed QC‐PCSANN‐CHIO‐FD approach attains 24.11%, 28.56% and 22.73% high specificity, 21.89%, 23.04% and 9.51% lower computation Time, 25.289%, 15.35% and 19.91% higher ROC and 8.65%, 13.8%, and 7.15% higher Accuracy compared with existing methods, such as combining deep learning based on quantum computing for electrical power system malfunction diagnosis (QC‐ANN‐FD), electrical power system fault diagnostics using hybrid quantum‐classical deep learning (QC‐CRBM‐FD), applications of machine learning to the identification of power system faults: Recent developments and future directions (QC‐RF‐FD).","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"29 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the fusion of lattice‐based quantum key distribution for secure Internet of Things communications 探索基于网格的量子密钥分发与安全物联网通信的融合
Pub Date : 2024-07-23 DOI: 10.1049/qtc2.12105
Sujit Biswas, R. Goswami, K. Hemant Kumar Reddy, S. Mohanty, M. A. Ahmed
The integration of lattice‐based cryptography principles with Quantum Key Distribution (QKD) protocols is explored to enhance security in the context of Internet of Things (IoT) ecosystems. With the advent of quantum computing, traditional cryptographic methods are increasingly susceptible to attacks, necessitating the development of quantum‐resistant approaches. By leveraging the inherent resilience of lattice‐based cryptography, a synergistic fusion with QKD is proposed to establish secure and robust communication channels among IoT devices. Through comprehensive Qiskit simulations and theoretical analysis, the feasibility, security guarantees, and performance implications of this novel hybrid approach are thoroughly investigated. The findings not only demonstrate the efficacy of lattice‐based QKD in mitigating quantum threats, but also highlight its potential to fortify IoT communications against emerging security challenges. Moreover, the authors provide valuable insights into the practical implementation considerations and scalability aspects of this fusion approach. This research contributes to advancing the understanding of quantum‐resistant cryptography for IoT applications and paves the way for further exploration and development in this critical domain.
本文探讨了如何将基于晶格的密码学原理与量子密钥分发(QKD)协议相结合,以提高物联网(IoT)生态系统的安全性。随着量子计算的出现,传统加密方法越来越容易受到攻击,因此有必要开发抗量子攻击的方法。通过利用基于晶格的密码学的固有弹性,我们提出了一种与 QKD 的协同融合方法,以便在物联网设备之间建立安全稳健的通信信道。通过全面的 Qiskit 仿真和理论分析,对这种新型混合方法的可行性、安全保证和性能影响进行了深入研究。研究结果不仅证明了基于晶格的 QKD 在减轻量子威胁方面的功效,还突出了它在加强物联网通信以应对新出现的安全挑战方面的潜力。此外,作者还就这种融合方法的实际实施考虑因素和可扩展性方面提供了宝贵的见解。这项研究有助于加深人们对物联网应用中抗量子密码学的理解,并为这一关键领域的进一步探索和发展铺平了道路。
{"title":"Exploring the fusion of lattice‐based quantum key distribution for secure Internet of Things communications","authors":"Sujit Biswas, R. Goswami, K. Hemant Kumar Reddy, S. Mohanty, M. A. Ahmed","doi":"10.1049/qtc2.12105","DOIUrl":"https://doi.org/10.1049/qtc2.12105","url":null,"abstract":"The integration of lattice‐based cryptography principles with Quantum Key Distribution (QKD) protocols is explored to enhance security in the context of Internet of Things (IoT) ecosystems. With the advent of quantum computing, traditional cryptographic methods are increasingly susceptible to attacks, necessitating the development of quantum‐resistant approaches. By leveraging the inherent resilience of lattice‐based cryptography, a synergistic fusion with QKD is proposed to establish secure and robust communication channels among IoT devices. Through comprehensive Qiskit simulations and theoretical analysis, the feasibility, security guarantees, and performance implications of this novel hybrid approach are thoroughly investigated. The findings not only demonstrate the efficacy of lattice‐based QKD in mitigating quantum threats, but also highlight its potential to fortify IoT communications against emerging security challenges. Moreover, the authors provide valuable insights into the practical implementation considerations and scalability aspects of this fusion approach. This research contributes to advancing the understanding of quantum‐resistant cryptography for IoT applications and paves the way for further exploration and development in this critical domain.","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"137 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141811111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum calculi and formalisms for system and network security: A bibliographic insights and synoptic review 系统和网络安全的量子计算和形式主义:书目见解和综述
Pub Date : 2024-07-21 DOI: 10.1049/qtc2.12102
Adarsh Kumar, Mustapha Hedabou, Diego Augusto de Jesus Pacheco
Quantum calculi and formalisms are useful tools for ensuring security and computational capabilities in blockchain and cryptography. They aid in designing and analysing new cryptographic protocols for blockchain, determining the behaviour of quantum operations in blockchain‐based smart contracts, assessing the feasibility and security of quantum algorithms in blockchain applications, and building a quantum‐safe blockchain system. A comprehensive review of the applications of quantum calculi and formalisms in computer security and network security, along with a bibliographic analysis is presented. It is unique in that it combines bibliometric analyses with a technical review of the domain of quantum calculi and formalism. Bibliometric and biographic analysis in the field helps identify research trends, assess the influence of research, determine collaboration patterns, evaluate journals, and examine publication behaviours, among other things. It performs bibliographic and bibliometric analysis using a dataset collected from Scopus and Web of Science through different queries. The obtained results help identify important institutions, authors, organisations, collaboration networks, keywords, and more. The provided open challenges and future vision pave the way for further research in the direction of quantum calculi and formalism applications in computer security and network security.
量子计算和形式主义是确保区块链和密码学安全性和计算能力的有用工具。它们有助于为区块链设计和分析新的加密协议,确定基于区块链的智能合约中的量子操作行为,评估区块链应用中量子算法的可行性和安全性,以及构建量子安全的区块链系统。本书全面回顾了量子计算和形式主义在计算机安全和网络安全中的应用,并进行了文献分析。它的独特之处在于将文献计量分析与量子计算和形式主义领域的技术综述相结合。该领域的文献计量和传记分析有助于确定研究趋势、评估研究影响、确定合作模式、评估期刊和检查出版行为等。它利用从 Scopus 和 Web of Science 收集的数据集,通过不同的查询进行书目和文献计量分析。获得的结果有助于识别重要的机构、作者、组织、合作网络、关键词等。提供的公开挑战和未来愿景为计算机安全和网络安全领域量子计算和形式主义应用方向的进一步研究铺平了道路。
{"title":"Quantum calculi and formalisms for system and network security: A bibliographic insights and synoptic review","authors":"Adarsh Kumar, Mustapha Hedabou, Diego Augusto de Jesus Pacheco","doi":"10.1049/qtc2.12102","DOIUrl":"https://doi.org/10.1049/qtc2.12102","url":null,"abstract":"Quantum calculi and formalisms are useful tools for ensuring security and computational capabilities in blockchain and cryptography. They aid in designing and analysing new cryptographic protocols for blockchain, determining the behaviour of quantum operations in blockchain‐based smart contracts, assessing the feasibility and security of quantum algorithms in blockchain applications, and building a quantum‐safe blockchain system. A comprehensive review of the applications of quantum calculi and formalisms in computer security and network security, along with a bibliographic analysis is presented. It is unique in that it combines bibliometric analyses with a technical review of the domain of quantum calculi and formalism. Bibliometric and biographic analysis in the field helps identify research trends, assess the influence of research, determine collaboration patterns, evaluate journals, and examine publication behaviours, among other things. It performs bibliographic and bibliometric analysis using a dataset collected from Scopus and Web of Science through different queries. The obtained results help identify important institutions, authors, organisations, collaboration networks, keywords, and more. The provided open challenges and future vision pave the way for further research in the direction of quantum calculi and formalism applications in computer security and network security.","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"10 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum‐inspired Arecanut X‐ray image classification using transfer learning 利用迁移学习进行量子启发的阿雷卡努X射线图像分类
Pub Date : 2024-06-06 DOI: 10.1049/qtc2.12099
Praveen M Naik, Bhawana Rudra
Arecanut X‐ray images accurately represent their internal structure. A comparative analysis of transfer learning‐based classification, employing both a traditional convolutional neural network (CNN) and an advanced quantum convolutional neural network (QCNN) approach is conducted. The investigation explores various transfer learning models with different sizes to identify the most suitable one for achieving enhanced accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of the 12 transfer learning models tested, 9 exhibit improved classification accuracy when using QCNN models compared to the traditional CNN‐based transfer learning approach. Consequently, the exploration of CNN and QCNN‐based classification reveals that QCNN outperforms traditional CNN models in accuracy within the transfer learning framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for classification operations in this context.
火麻仁的 X 射线图像能准确反映其内部结构。研究采用传统的卷积神经网络(CNN)和先进的量子卷积神经网络(QCNN)方法,对基于迁移学习的分类进行了比较分析。研究探索了各种不同规模的迁移学习模型,以确定最适合的模型,从而提高准确率。使用 QCNN 方法,规模因子为 2.0 的 Shufflenet 模型分类准确率最高,达到 97.72%,模型大小为 28.40 MB。在测试的 12 个迁移学习模型中,与传统的基于 CNN 的迁移学习方法相比,使用 QCNN 模型时,9 个模型的分类准确率有所提高。因此,对基于 CNN 和 QCNN 的分类方法的探索表明,在迁移学习框架内,QCNN 的准确性优于传统的 CNN 模型。对量子比特的进一步实验表明,在这种情况下,利用 4 个量子比特进行分类操作是最佳选择。
{"title":"Quantum‐inspired Arecanut X‐ray image classification using transfer learning","authors":"Praveen M Naik, Bhawana Rudra","doi":"10.1049/qtc2.12099","DOIUrl":"https://doi.org/10.1049/qtc2.12099","url":null,"abstract":"Arecanut X‐ray images accurately represent their internal structure. A comparative analysis of transfer learning‐based classification, employing both a traditional convolutional neural network (CNN) and an advanced quantum convolutional neural network (QCNN) approach is conducted. The investigation explores various transfer learning models with different sizes to identify the most suitable one for achieving enhanced accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of the 12 transfer learning models tested, 9 exhibit improved classification accuracy when using QCNN models compared to the traditional CNN‐based transfer learning approach. Consequently, the exploration of CNN and QCNN‐based classification reveals that QCNN outperforms traditional CNN models in accuracy within the transfer learning framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for classification operations in this context.","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"31 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141378778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum computing challenges and solutions in software industry—A multivocal literature review 软件行业的量子计算挑战与解决方案--多声部文献综述
Pub Date : 2024-06-02 DOI: 10.1049/qtc2.12096
Masaud Salam, Muhammad Ilyas
Quantum computing (QC) hinged upon the bedrock principles of quantum theory and holds promise for reforming a large number of industries. The researcher in this area aims to deliver a comprehensive understanding of the current state of the art and future trajectories of QC. The authors have discovered that most academic studies have concentrated upon dissecting specific aspects of QC. This discernment underscores the exigency of identifying challenges that might impede the seamless integration of QC within the software industry. Moreover, it becomes crucial to ascertain the panoply of solutions/practices required to overcome these barriers. A comprehensive multi‐vocal literature review was performed and culled a total of 49 academic papers for data extraction. A total of 13 challenges encountered by organisations were identified during the adoption of QC. Subsequently, these challenges were examined deeply and determined that five of them are the most critical, these are ‘Lack of quantum specific algorithms, dev and testing methodologies’, ‘Difficult compilation and debugging’, ‘Lack of development tools and technology’, ‘Lack of development guidelines & Quality Assurance Standards’ and ‘Lack of professional expert’, together founding over 30% of occurrences. These challenges from various perspectives were evaluated, including time frame, methodology, geographical region and publication platform. To address these barriers and implement the QC in software industry effectively, a total of 53 practices/solutions. This research aims to share valuable knowledge to simplify and amplify quantum application development.
量子计算(QC)以量子理论的基本原理为基础,有望对众多行业进行改革。该领域的研究人员旨在全面了解量子计算的技术现状和未来发展轨迹。作者发现,大多数学术研究都集中在对质量控制的特定方面进行剖析。这种认识突出表明,有必要找出可能阻碍质量控制与软件业无缝整合的挑战。此外,确定克服这些障碍所需的一系列解决方案/做法也变得至关重要。我们进行了全面的多声部文献综述,共收集了 49 篇学术论文进行数据提取。共发现了 13 项组织在采用质量控制过程中遇到的挑战。随后,对这些挑战进行了深入研究,确定其中五项挑战最为关键,它们是 "缺乏量子特定算法、开发和测试方法"、"编译和调试困难"、"缺乏开发工具和技术"、"缺乏开发指南和质量保证标准 "和 "缺乏专业专家",这些挑战共占出现次数的 30%以上。我们从不同角度对这些挑战进行了评估,包括时间框架、方法、地理区域和出版平台。为解决这些障碍并在软件行业有效实施质量控制,共提出了 53 种做法/解决方案。本研究旨在分享有价值的知识,以简化和扩大量子应用开发。
{"title":"Quantum computing challenges and solutions in software industry—A multivocal literature review","authors":"Masaud Salam, Muhammad Ilyas","doi":"10.1049/qtc2.12096","DOIUrl":"https://doi.org/10.1049/qtc2.12096","url":null,"abstract":"Quantum computing (QC) hinged upon the bedrock principles of quantum theory and holds promise for reforming a large number of industries. The researcher in this area aims to deliver a comprehensive understanding of the current state of the art and future trajectories of QC. The authors have discovered that most academic studies have concentrated upon dissecting specific aspects of QC. This discernment underscores the exigency of identifying challenges that might impede the seamless integration of QC within the software industry. Moreover, it becomes crucial to ascertain the panoply of solutions/practices required to overcome these barriers. A comprehensive multi‐vocal literature review was performed and culled a total of 49 academic papers for data extraction. A total of 13 challenges encountered by organisations were identified during the adoption of QC. Subsequently, these challenges were examined deeply and determined that five of them are the most critical, these are ‘Lack of quantum specific algorithms, dev and testing methodologies’, ‘Difficult compilation and debugging’, ‘Lack of development tools and technology’, ‘Lack of development guidelines & Quality Assurance Standards’ and ‘Lack of professional expert’, together founding over 30% of occurrences. These challenges from various perspectives were evaluated, including time frame, methodology, geographical region and publication platform. To address these barriers and implement the QC in software industry effectively, a total of 53 practices/solutions. This research aims to share valuable knowledge to simplify and amplify quantum application development.","PeriodicalId":507937,"journal":{"name":"IET Quantum Communication","volume":"49 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Quantum Communication
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1