Rafaella Bartz Pena, Rafael Abel da Silveira, Gisele Hippler, Leonardo de Lima Evaristo, Lucas Eduardo Corrêa, Danusa do Carmo, Narcizo Marques Souza-Neto, Altair Soria Pereira, Ulisses Ferreira Kaneko, Silvio Buchner, Ricardo Donizeth dos Reis
{"title":"天狼星的 EMA 光束线:探测极端热力学条件下玻璃和玻璃陶瓷的多功能平台","authors":"Rafaella Bartz Pena, Rafael Abel da Silveira, Gisele Hippler, Leonardo de Lima Evaristo, Lucas Eduardo Corrêa, Danusa do Carmo, Narcizo Marques Souza-Neto, Altair Soria Pereira, Ulisses Ferreira Kaneko, Silvio Buchner, Ricardo Donizeth dos Reis","doi":"10.1111/ijag.16676","DOIUrl":null,"url":null,"abstract":"<p>Glass and glass ceramics are very functional materials, albeit their structural complexity. Their relevance ranges from fundamental science problems in the fields of physics, chemistry, and geoscience, to applications in health areas, engineering, or technological matters that require high performance. Enhancing our understanding of these materials' performance and refining sample preparation methods remains paramount in this field. Synchrotron facilities offer a suite of powerful techniques for the detailed characterization of glasses and glass ceramics. These methods provide valuable insights into their atomic and molecular structure, phase transformations, mechanical behavior, and thermal properties, ultimately contributing to the development of improved materials for a wide range of applications. In-depth investigations conducted under extreme conditions of pressure and temperature have yielded pivotal insights into densification mechanisms, phase transitions, crystallization kinetics, and their consequential macroscopic properties. The emergence of fourth-generation synchrotrons brings in a wave of novel experimental possibilities that may exert a profound influence on this field in the coming decade. In this study, we unveil a selection of the remarkable capabilities now accessible to researchers at the Brazilian Synchrotron Light Source—Sirius, within the realm of extreme methods of analysis (EMA) beamline for investigating vitreous systems under extreme conditions.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMA beamline at Sirius: A versatile platform to probe glass and glass ceramics under extreme thermodynamic conditions\",\"authors\":\"Rafaella Bartz Pena, Rafael Abel da Silveira, Gisele Hippler, Leonardo de Lima Evaristo, Lucas Eduardo Corrêa, Danusa do Carmo, Narcizo Marques Souza-Neto, Altair Soria Pereira, Ulisses Ferreira Kaneko, Silvio Buchner, Ricardo Donizeth dos Reis\",\"doi\":\"10.1111/ijag.16676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glass and glass ceramics are very functional materials, albeit their structural complexity. Their relevance ranges from fundamental science problems in the fields of physics, chemistry, and geoscience, to applications in health areas, engineering, or technological matters that require high performance. Enhancing our understanding of these materials' performance and refining sample preparation methods remains paramount in this field. Synchrotron facilities offer a suite of powerful techniques for the detailed characterization of glasses and glass ceramics. These methods provide valuable insights into their atomic and molecular structure, phase transformations, mechanical behavior, and thermal properties, ultimately contributing to the development of improved materials for a wide range of applications. In-depth investigations conducted under extreme conditions of pressure and temperature have yielded pivotal insights into densification mechanisms, phase transitions, crystallization kinetics, and their consequential macroscopic properties. The emergence of fourth-generation synchrotrons brings in a wave of novel experimental possibilities that may exert a profound influence on this field in the coming decade. In this study, we unveil a selection of the remarkable capabilities now accessible to researchers at the Brazilian Synchrotron Light Source—Sirius, within the realm of extreme methods of analysis (EMA) beamline for investigating vitreous systems under extreme conditions.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16676\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16676","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
EMA beamline at Sirius: A versatile platform to probe glass and glass ceramics under extreme thermodynamic conditions
Glass and glass ceramics are very functional materials, albeit their structural complexity. Their relevance ranges from fundamental science problems in the fields of physics, chemistry, and geoscience, to applications in health areas, engineering, or technological matters that require high performance. Enhancing our understanding of these materials' performance and refining sample preparation methods remains paramount in this field. Synchrotron facilities offer a suite of powerful techniques for the detailed characterization of glasses and glass ceramics. These methods provide valuable insights into their atomic and molecular structure, phase transformations, mechanical behavior, and thermal properties, ultimately contributing to the development of improved materials for a wide range of applications. In-depth investigations conducted under extreme conditions of pressure and temperature have yielded pivotal insights into densification mechanisms, phase transitions, crystallization kinetics, and their consequential macroscopic properties. The emergence of fourth-generation synchrotrons brings in a wave of novel experimental possibilities that may exert a profound influence on this field in the coming decade. In this study, we unveil a selection of the remarkable capabilities now accessible to researchers at the Brazilian Synchrotron Light Source—Sirius, within the realm of extreme methods of analysis (EMA) beamline for investigating vitreous systems under extreme conditions.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.