将机器学习应用于晶体行为和结晶过程控制的最新进展

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-06 DOI:10.1021/acs.cgd.3c01251
Meijin Lu, Silin Rao, Hong Yue, Junjie Han and Jingtao Wang*, 
{"title":"将机器学习应用于晶体行为和结晶过程控制的最新进展","authors":"Meijin Lu,&nbsp;Silin Rao,&nbsp;Hong Yue,&nbsp;Junjie Han and Jingtao Wang*,&nbsp;","doi":"10.1021/acs.cgd.3c01251","DOIUrl":null,"url":null,"abstract":"<p >Crystals are integral to a variety of industrial applications, such as the development of pharmaceuticals and advancements in material science. To anticipate crystal behavior and pinpoint effective crystallization techniques, a thorough investigation of crystal structures, properties, and the associated processes is essential. However, conventional methods like experimental procedures and quantum mechanics calculations, while crucial, can be expensive and time-consuming. In response, machine learning has risen as an effective alternative, complementing the traditional approaches based on quantum mechanics and classical force fields. In the recent years, the deployment of machine learning in the realm of crystallization has yielded notable progress. This review offers a concise overview of the application of machine learning techniques in crystallization, focusing on the past five years. Our analysis of the literature indicates that machine learning has accelerated the prediction of crystal structures by streamlining the generation and evaluation of structures. Additionally, it has facilitated the prediction of key crystal properties such as solubility, melting point, and habit. The review further explores the role of machine learning in refining the control and optimization of crystallization processes, highlighting the restrictions of conventional algorithms and sensing technologies. The advantages of end-to-end processing for enhancing the accuracy of predictions and the combination of data-driven with mechanism-based models for robustness are also considered. In summary, this review provides insights into the current state of machine learning in the field of intelligent crystallization and suggests pathways for future research and development.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Application of Machine Learning to Crystal Behavior and Crystallization Process Control\",\"authors\":\"Meijin Lu,&nbsp;Silin Rao,&nbsp;Hong Yue,&nbsp;Junjie Han and Jingtao Wang*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.3c01251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystals are integral to a variety of industrial applications, such as the development of pharmaceuticals and advancements in material science. To anticipate crystal behavior and pinpoint effective crystallization techniques, a thorough investigation of crystal structures, properties, and the associated processes is essential. However, conventional methods like experimental procedures and quantum mechanics calculations, while crucial, can be expensive and time-consuming. In response, machine learning has risen as an effective alternative, complementing the traditional approaches based on quantum mechanics and classical force fields. In the recent years, the deployment of machine learning in the realm of crystallization has yielded notable progress. This review offers a concise overview of the application of machine learning techniques in crystallization, focusing on the past five years. Our analysis of the literature indicates that machine learning has accelerated the prediction of crystal structures by streamlining the generation and evaluation of structures. Additionally, it has facilitated the prediction of key crystal properties such as solubility, melting point, and habit. The review further explores the role of machine learning in refining the control and optimization of crystallization processes, highlighting the restrictions of conventional algorithms and sensing technologies. The advantages of end-to-end processing for enhancing the accuracy of predictions and the combination of data-driven with mechanism-based models for robustness are also considered. In summary, this review provides insights into the current state of machine learning in the field of intelligent crystallization and suggests pathways for future research and development.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01251\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01251","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体与各种工业应用密不可分,例如药品的开发和材料科学的进步。要预测晶体行为并确定有效的结晶技术,就必须对晶体结构、性质和相关过程进行深入研究。然而,实验程序和量子力学计算等传统方法虽然至关重要,但却既昂贵又耗时。为此,机器学习成为一种有效的替代方法,对基于量子力学和经典力场的传统方法进行了补充。近年来,机器学习在结晶领域的应用取得了显著进展。本综述简要概述了过去五年机器学习技术在结晶领域的应用。我们对文献的分析表明,机器学习通过简化结构的生成和评估,加快了晶体结构的预测。此外,机器学习还促进了对溶解度、熔点和习性等关键晶体属性的预测。综述进一步探讨了机器学习在完善控制和优化结晶过程中的作用,强调了传统算法和传感技术的局限性。此外,还考虑了端到端处理在提高预测准确性方面的优势,以及将数据驱动模型与基于机理的模型相结合以提高稳健性方面的优势。总之,本综述深入分析了智能结晶领域机器学习的现状,并提出了未来研究和发展的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in the Application of Machine Learning to Crystal Behavior and Crystallization Process Control

Crystals are integral to a variety of industrial applications, such as the development of pharmaceuticals and advancements in material science. To anticipate crystal behavior and pinpoint effective crystallization techniques, a thorough investigation of crystal structures, properties, and the associated processes is essential. However, conventional methods like experimental procedures and quantum mechanics calculations, while crucial, can be expensive and time-consuming. In response, machine learning has risen as an effective alternative, complementing the traditional approaches based on quantum mechanics and classical force fields. In the recent years, the deployment of machine learning in the realm of crystallization has yielded notable progress. This review offers a concise overview of the application of machine learning techniques in crystallization, focusing on the past five years. Our analysis of the literature indicates that machine learning has accelerated the prediction of crystal structures by streamlining the generation and evaluation of structures. Additionally, it has facilitated the prediction of key crystal properties such as solubility, melting point, and habit. The review further explores the role of machine learning in refining the control and optimization of crystallization processes, highlighting the restrictions of conventional algorithms and sensing technologies. The advantages of end-to-end processing for enhancing the accuracy of predictions and the combination of data-driven with mechanism-based models for robustness are also considered. In summary, this review provides insights into the current state of machine learning in the field of intelligent crystallization and suggests pathways for future research and development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Structure and Morphology Controlled Growth of Bismuth Selenide Films with Tunable Transport Properties on H-Passivated Si(111) by Molecular Beam Epitaxy In the Footsteps of Pasteur: Finding Conglomerates by Using State-of-the-Art Electron Diffraction Issue Editorial Masthead Issue Publication Information Log-Normal Glide and the Formation of Misfit Dislocation Networks in Heteroepitaxial ZnS on GaP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1