用于 275 纳米深紫外发光二极管的偏振掺杂 AlxGa1-xN(x = 0.9-0.35)- 梯度层中的空穴生成,带高镁掺杂 Al0.35Ga0.65N 接触层

Hayata Takahata, Tomoaki Kachi, Naoki Hamashima, Ryunosuke Oka, Hisanori Ishiguro, Tetsuya Takeuchi, S. Kamiyama, M. Iwaya, Y. Saito, K. Okuno
{"title":"用于 275 纳米深紫外发光二极管的偏振掺杂 AlxGa1-xN(x = 0.9-0.35)- 梯度层中的空穴生成,带高镁掺杂 Al0.35Ga0.65N 接触层","authors":"Hayata Takahata, Tomoaki Kachi, Naoki Hamashima, Ryunosuke Oka, Hisanori Ishiguro, Tetsuya Takeuchi, S. Kamiyama, M. Iwaya, Y. Saito, K. Okuno","doi":"10.1002/pssa.202400054","DOIUrl":null,"url":null,"abstract":"Herein, hole generation in a 60 nm thick polarization‐doped AlxGa1–xN (x = 0.9–0.35)‐graded layer with some Mg doping (5 × 1018 cm−3) is demonstrated by using a 10 nm thick heavily (1 × 1020 cm−3) Mg‐doped Al0.35Ga0.65N contact layer. First, light emission from a deep‐ultraviolet light‐emitting diode is observed with the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer, indicating a vertical hole transport from the Al0.35Ga0.65N contact layer to the active region through the polarization‐doped AlGaN‐graded layer. Second, hole concentration, mobility, and resistivity values of the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer are evaluated by Hall effect measurement. A hole concentration of 1.8 × 1018 cm−3 is clearly observed by removing the AlGaN contact layer (not underneath of electrodes) to minimize a parallel conduction. The hole concentration shows a very weak temperature dependence from room temperature down to 150 K, suggesting that the holes are generated by polarization doping. Hole generation in the fully strained AlxGa1–xN (x = 0.9–0.35)‐graded layer is directly evaluated by Hall effect measurement with the AlGaN contact layer just underneath the electrodes.","PeriodicalId":20150,"journal":{"name":"physica status solidi (a)","volume":"60 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hole Generation in Polarization‐Doped AlxGa1–xN (x = 0.9–0.35)‐Graded Layer with Heavily Mg‐Doped Al0.35Ga0.65N Contact Layer for 275 nm Deep‐Ultraviolet Light‐Emitting Diode\",\"authors\":\"Hayata Takahata, Tomoaki Kachi, Naoki Hamashima, Ryunosuke Oka, Hisanori Ishiguro, Tetsuya Takeuchi, S. Kamiyama, M. Iwaya, Y. Saito, K. Okuno\",\"doi\":\"10.1002/pssa.202400054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, hole generation in a 60 nm thick polarization‐doped AlxGa1–xN (x = 0.9–0.35)‐graded layer with some Mg doping (5 × 1018 cm−3) is demonstrated by using a 10 nm thick heavily (1 × 1020 cm−3) Mg‐doped Al0.35Ga0.65N contact layer. First, light emission from a deep‐ultraviolet light‐emitting diode is observed with the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer, indicating a vertical hole transport from the Al0.35Ga0.65N contact layer to the active region through the polarization‐doped AlGaN‐graded layer. Second, hole concentration, mobility, and resistivity values of the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer are evaluated by Hall effect measurement. A hole concentration of 1.8 × 1018 cm−3 is clearly observed by removing the AlGaN contact layer (not underneath of electrodes) to minimize a parallel conduction. The hole concentration shows a very weak temperature dependence from room temperature down to 150 K, suggesting that the holes are generated by polarization doping. Hole generation in the fully strained AlxGa1–xN (x = 0.9–0.35)‐graded layer is directly evaluated by Hall effect measurement with the AlGaN contact layer just underneath the electrodes.\",\"PeriodicalId\":20150,\"journal\":{\"name\":\"physica status solidi (a)\",\"volume\":\"60 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (a)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202400054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此,通过使用 10 nm 厚(1 × 1020 cm-3)的大量掺入镁的 Al0.35Ga0.65N 接触层,演示了在 60 nm 厚的偏振掺杂 AlxGa1-xN (x = 0.9-0.35)分级层中产生空穴的过程。首先,在 AlxGa1-xN(x = 0.9-0.35)分级层和 Al0.35Ga0.65N 接触层上观察到了深紫外发光二极管的光发射,表明空穴从 Al0.35Ga0.65N 接触层通过极化掺杂的 AlGaN 分级层垂直传输到有源区。其次,通过霍尔效应测量评估了 AlxGa1-xN(x = 0.9-0.35)分级层和 Al0.35Ga0.65N 接触层的空穴浓度、迁移率和电阻率值。通过移除 AlGaN 接触层(非电极下方)以减少平行传导,可以清楚地观察到 1.8 × 1018 cm-3 的空穴浓度。从室温到 150 K,空穴浓度与温度的关系非常微弱,这表明空穴是通过极化掺杂产生的。通过霍尔效应测量直接评估了完全应变的 AlxGa1-xN (x = 0.9-0.35) 梯度层中的空穴生成情况,AlGaN 接触层正好位于电极下方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hole Generation in Polarization‐Doped AlxGa1–xN (x = 0.9–0.35)‐Graded Layer with Heavily Mg‐Doped Al0.35Ga0.65N Contact Layer for 275 nm Deep‐Ultraviolet Light‐Emitting Diode
Herein, hole generation in a 60 nm thick polarization‐doped AlxGa1–xN (x = 0.9–0.35)‐graded layer with some Mg doping (5 × 1018 cm−3) is demonstrated by using a 10 nm thick heavily (1 × 1020 cm−3) Mg‐doped Al0.35Ga0.65N contact layer. First, light emission from a deep‐ultraviolet light‐emitting diode is observed with the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer, indicating a vertical hole transport from the Al0.35Ga0.65N contact layer to the active region through the polarization‐doped AlGaN‐graded layer. Second, hole concentration, mobility, and resistivity values of the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer are evaluated by Hall effect measurement. A hole concentration of 1.8 × 1018 cm−3 is clearly observed by removing the AlGaN contact layer (not underneath of electrodes) to minimize a parallel conduction. The hole concentration shows a very weak temperature dependence from room temperature down to 150 K, suggesting that the holes are generated by polarization doping. Hole generation in the fully strained AlxGa1–xN (x = 0.9–0.35)‐graded layer is directly evaluated by Hall effect measurement with the AlGaN contact layer just underneath the electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast Laser Hyperdoped Black Silicon and Its Application in Photodetectors: A Review Dynamic RON Degradation Suppression by Gate Field Plate in Partially Recessed AlGaN/GaN Metal–Insulator–Semiconductor High‐Electron‐Mobility Transistors Graphene Oxide as Novel Visible Light Active Photocatalyst: Synthesis, Modification by Nitrogen and Boron Doping, and Photocatalytic Application Influence of Parameters in Vapor Transport Equilibration Treatment on Composition and Homogeneity of LiTaO3 Single Crystals Comparative Study on Temperature‐Dependent Internal Quantum Efficiency and Light–Extraction Efficiency in III‐Nitride–, III‐Phosphide–, and III‐Arsenide–based Light‐Emitting Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1