先进光伏技术制氢的机器学习辅助预测

Qiang Yang , Zhu Ma , Lihong Bai , Qiuyue Yuan , Fuchun Gou , Yanlin Li , Zhuowei Du , Yi Chen , Xingchong Liu , Jian Yu , Xiaoqian Zhou , Cheng Qian , Zichen Liu , Zilu Tian , Anan Zhang , Kuan Sun , Liming Ding , Chun Tang , Taoli Meng , Fan Min , Ying Zhou
{"title":"先进光伏技术制氢的机器学习辅助预测","authors":"Qiang Yang ,&nbsp;Zhu Ma ,&nbsp;Lihong Bai ,&nbsp;Qiuyue Yuan ,&nbsp;Fuchun Gou ,&nbsp;Yanlin Li ,&nbsp;Zhuowei Du ,&nbsp;Yi Chen ,&nbsp;Xingchong Liu ,&nbsp;Jian Yu ,&nbsp;Xiaoqian Zhou ,&nbsp;Cheng Qian ,&nbsp;Zichen Liu ,&nbsp;Zilu Tian ,&nbsp;Anan Zhang ,&nbsp;Kuan Sun ,&nbsp;Liming Ding ,&nbsp;Chun Tang ,&nbsp;Taoli Meng ,&nbsp;Fan Min ,&nbsp;Ying Zhou","doi":"10.1016/j.decarb.2024.100050","DOIUrl":null,"url":null,"abstract":"<div><p>The photovoltaic (PV) water electrolysis method currently stands as the most promising approach for green hydrogen production. The rapid iteration of photovoltaic technologies has significantly affected on the technical and economic evaluation for photovoltaic hydrogen production. In this work, the photovoltaic hydrogen production of three most advanced silicon photovoltaic technologies is systematically compared for the first time under the climatic conditions of the Kucha region. All-weather stable hydrogen production control system with optimal charging and discharging strategies is constructed to realize stable and efficient hydrogen energy production. Seven machine learning (ML) algorithms are used to forecast the performance in power generation and hydrogen production of a 100 ​MW photovoltaic hydrogen production and energy storage (PH-S) system throughout its operational life. The long short-term memory (LSTM) algorithm exhibits the best performance, achieving mean absolute error (MAE) of 0.0415, root mean square error (RMSE) of 0.0891, and coefficient of determination (R<sup>2</sup>) of 0.8402. In terms of cost-effectiveness, heterojunction with intrinsic thin layer (HJT) PV technology achieves the lowest levelized cost of electricity (LCOE) and hydrogen (LCOH) at 0.025 $/kWh and 6.95 $/kg, respectively. According to the sensitivity analysis, when the cost of proton exchange membrane electrolysis (PEMEC) reduced 50%, the LCOH for PH-S system decreased 21.40%. This study provides valuable insights for the practical implementation of large-scale photovoltaic hydrogen production and cost reduction in PH-S systems.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"4 ","pages":"Article 100050"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000167/pdfft?md5=52c6f21d98127ed5fdad45da1d4c6b4d&pid=1-s2.0-S2949881324000167-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning assisted prediction for hydrogen production of advanced photovoltaic technologies\",\"authors\":\"Qiang Yang ,&nbsp;Zhu Ma ,&nbsp;Lihong Bai ,&nbsp;Qiuyue Yuan ,&nbsp;Fuchun Gou ,&nbsp;Yanlin Li ,&nbsp;Zhuowei Du ,&nbsp;Yi Chen ,&nbsp;Xingchong Liu ,&nbsp;Jian Yu ,&nbsp;Xiaoqian Zhou ,&nbsp;Cheng Qian ,&nbsp;Zichen Liu ,&nbsp;Zilu Tian ,&nbsp;Anan Zhang ,&nbsp;Kuan Sun ,&nbsp;Liming Ding ,&nbsp;Chun Tang ,&nbsp;Taoli Meng ,&nbsp;Fan Min ,&nbsp;Ying Zhou\",\"doi\":\"10.1016/j.decarb.2024.100050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The photovoltaic (PV) water electrolysis method currently stands as the most promising approach for green hydrogen production. The rapid iteration of photovoltaic technologies has significantly affected on the technical and economic evaluation for photovoltaic hydrogen production. In this work, the photovoltaic hydrogen production of three most advanced silicon photovoltaic technologies is systematically compared for the first time under the climatic conditions of the Kucha region. All-weather stable hydrogen production control system with optimal charging and discharging strategies is constructed to realize stable and efficient hydrogen energy production. Seven machine learning (ML) algorithms are used to forecast the performance in power generation and hydrogen production of a 100 ​MW photovoltaic hydrogen production and energy storage (PH-S) system throughout its operational life. The long short-term memory (LSTM) algorithm exhibits the best performance, achieving mean absolute error (MAE) of 0.0415, root mean square error (RMSE) of 0.0891, and coefficient of determination (R<sup>2</sup>) of 0.8402. In terms of cost-effectiveness, heterojunction with intrinsic thin layer (HJT) PV technology achieves the lowest levelized cost of electricity (LCOE) and hydrogen (LCOH) at 0.025 $/kWh and 6.95 $/kg, respectively. According to the sensitivity analysis, when the cost of proton exchange membrane electrolysis (PEMEC) reduced 50%, the LCOH for PH-S system decreased 21.40%. This study provides valuable insights for the practical implementation of large-scale photovoltaic hydrogen production and cost reduction in PH-S systems.</p></div>\",\"PeriodicalId\":100356,\"journal\":{\"name\":\"DeCarbon\",\"volume\":\"4 \",\"pages\":\"Article 100050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949881324000167/pdfft?md5=52c6f21d98127ed5fdad45da1d4c6b4d&pid=1-s2.0-S2949881324000167-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DeCarbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949881324000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光伏水电解法是目前最有前途的绿色制氢方法。光伏技术的快速发展对光伏制氢的技术和经济评估产生了重大影响。在这项工作中,首次在库车地区的气候条件下对三种最先进的硅光伏技术的光伏制氢进行了系统比较。构建了具有最佳充放电策略的全天候稳定制氢控制系统,以实现稳定高效的氢能生产。使用七种机器学习(ML)算法预测 100 兆瓦光伏制氢和储能(PH-S)系统在整个运行寿命期间的发电和制氢性能。长短期记忆(LSTM)算法表现最佳,平均绝对误差(MAE)为 0.0415,均方根误差(RMSE)为 0.0891,判定系数(R2)为 0.8402。在成本效益方面,本征薄层异质结光伏技术实现了最低的平准化电力成本(LCOE)和氢气成本(LCOH),分别为 0.025 美元/千瓦时和 6.95 美元/千克。根据敏感性分析,当质子交换膜电解(PEMEC)的成本降低 50%时,PH-S 系统的 LCOH 降低了 21.40%。这项研究为大规模光伏制氢的实际应用和 PH-S 系统成本的降低提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning assisted prediction for hydrogen production of advanced photovoltaic technologies

The photovoltaic (PV) water electrolysis method currently stands as the most promising approach for green hydrogen production. The rapid iteration of photovoltaic technologies has significantly affected on the technical and economic evaluation for photovoltaic hydrogen production. In this work, the photovoltaic hydrogen production of three most advanced silicon photovoltaic technologies is systematically compared for the first time under the climatic conditions of the Kucha region. All-weather stable hydrogen production control system with optimal charging and discharging strategies is constructed to realize stable and efficient hydrogen energy production. Seven machine learning (ML) algorithms are used to forecast the performance in power generation and hydrogen production of a 100 ​MW photovoltaic hydrogen production and energy storage (PH-S) system throughout its operational life. The long short-term memory (LSTM) algorithm exhibits the best performance, achieving mean absolute error (MAE) of 0.0415, root mean square error (RMSE) of 0.0891, and coefficient of determination (R2) of 0.8402. In terms of cost-effectiveness, heterojunction with intrinsic thin layer (HJT) PV technology achieves the lowest levelized cost of electricity (LCOE) and hydrogen (LCOH) at 0.025 $/kWh and 6.95 $/kg, respectively. According to the sensitivity analysis, when the cost of proton exchange membrane electrolysis (PEMEC) reduced 50%, the LCOH for PH-S system decreased 21.40%. This study provides valuable insights for the practical implementation of large-scale photovoltaic hydrogen production and cost reduction in PH-S systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and perspectives toward wide-bandgap perovskite subcell in four-terminal all-perovskite tandem solar cells Eliminating active CO2 concentration in Carbon Capture and Storage (CCUS): Molten carbonate decarbonization through an insulation/diffusion membrane Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods Evaluating the economic and carbon emission reduction potential of fuel cell electric vehicle-to-grid Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1