Junan Long , Binbin Yu , Dandong Wang , Junye Shi , Jiangping Chen
{"title":"校准和验证用于两相 R744 喷嘴中跨临界闪蒸流的修正非平衡沸腾模型","authors":"Junan Long , Binbin Yu , Dandong Wang , Junye Shi , Jiangping Chen","doi":"10.1016/j.ijrefrig.2024.06.018","DOIUrl":null,"url":null,"abstract":"<div><p>A modified homogeneous non-equilibrium boiling approach (HNB) was proposed for high-fidelity modelling of the trans-critical flashing process in two-phase R744 ejector nozzles. In the modified approach, the method of determining the metastable liquid saturation pressure was improved by integrating the metastable liquid enthalpy. Experimental tests were conducted on two different nozzles to calibrate the lumped accommodation coefficient in the modified HNB. The calibration dataset consisted of 30 trans-critical test points, with the motive inlet pressure ranging from 7.5 MPa to 11.5 MPa and temperature varying from 21 °C to 45 °C. It was demonstrated that the boiling coefficient was strongly related to nozzle inlet pressure and specific enthalpy. The coefficient was therefore fitted as a function of the operating condition. The modified HNB with the fitted function was then validated against another set of test data composed of 29 test points. The results demonstrated that the relative errors of the nozzle mass-flow rates were within 3 %. Finally, the modified HNB with the improved metastable liquid saturation pressure was compared and discussed with the existing HNB approach in the literature.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration and validation of a modified non-equilibrium boiling model for transcritical flashing flow in two-phase R744 nozzles\",\"authors\":\"Junan Long , Binbin Yu , Dandong Wang , Junye Shi , Jiangping Chen\",\"doi\":\"10.1016/j.ijrefrig.2024.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A modified homogeneous non-equilibrium boiling approach (HNB) was proposed for high-fidelity modelling of the trans-critical flashing process in two-phase R744 ejector nozzles. In the modified approach, the method of determining the metastable liquid saturation pressure was improved by integrating the metastable liquid enthalpy. Experimental tests were conducted on two different nozzles to calibrate the lumped accommodation coefficient in the modified HNB. The calibration dataset consisted of 30 trans-critical test points, with the motive inlet pressure ranging from 7.5 MPa to 11.5 MPa and temperature varying from 21 °C to 45 °C. It was demonstrated that the boiling coefficient was strongly related to nozzle inlet pressure and specific enthalpy. The coefficient was therefore fitted as a function of the operating condition. The modified HNB with the fitted function was then validated against another set of test data composed of 29 test points. The results demonstrated that the relative errors of the nozzle mass-flow rates were within 3 %. Finally, the modified HNB with the improved metastable liquid saturation pressure was compared and discussed with the existing HNB approach in the literature.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002226\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002226","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Calibration and validation of a modified non-equilibrium boiling model for transcritical flashing flow in two-phase R744 nozzles
A modified homogeneous non-equilibrium boiling approach (HNB) was proposed for high-fidelity modelling of the trans-critical flashing process in two-phase R744 ejector nozzles. In the modified approach, the method of determining the metastable liquid saturation pressure was improved by integrating the metastable liquid enthalpy. Experimental tests were conducted on two different nozzles to calibrate the lumped accommodation coefficient in the modified HNB. The calibration dataset consisted of 30 trans-critical test points, with the motive inlet pressure ranging from 7.5 MPa to 11.5 MPa and temperature varying from 21 °C to 45 °C. It was demonstrated that the boiling coefficient was strongly related to nozzle inlet pressure and specific enthalpy. The coefficient was therefore fitted as a function of the operating condition. The modified HNB with the fitted function was then validated against another set of test data composed of 29 test points. The results demonstrated that the relative errors of the nozzle mass-flow rates were within 3 %. Finally, the modified HNB with the improved metastable liquid saturation pressure was compared and discussed with the existing HNB approach in the literature.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.