具有纳米结构强化缺陷的添加式制造细晶粒超高强度块状铝合金

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-07-01 DOI:10.1016/j.mattod.2024.05.006
Gan Li , Chunlu Zhao , Yuhe Huang , Qiyang Tan , Junhua Hou , Xi He , Chuan Guo , Wenjun Lu , Lin Zhou , Sida Liu , Lei Zhang , Xuliang Chen , Xinggang Li , Ying Li , Junhua Luan , Zhenmin Li , Xinping Mao , Ming-Xing Zhang , Qiang Zhu , Jian Lu
{"title":"具有纳米结构强化缺陷的添加式制造细晶粒超高强度块状铝合金","authors":"Gan Li ,&nbsp;Chunlu Zhao ,&nbsp;Yuhe Huang ,&nbsp;Qiyang Tan ,&nbsp;Junhua Hou ,&nbsp;Xi He ,&nbsp;Chuan Guo ,&nbsp;Wenjun Lu ,&nbsp;Lin Zhou ,&nbsp;Sida Liu ,&nbsp;Lei Zhang ,&nbsp;Xuliang Chen ,&nbsp;Xinggang Li ,&nbsp;Ying Li ,&nbsp;Junhua Luan ,&nbsp;Zhenmin Li ,&nbsp;Xinping Mao ,&nbsp;Ming-Xing Zhang ,&nbsp;Qiang Zhu ,&nbsp;Jian Lu","doi":"10.1016/j.mattod.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the critical need for lightweight designs and carbon neutrality, we introduce an innovative additively manufactured ultrafine-grained Al-Mg-Mn-Sc-Zr alloy reinforced with nano-structured planar defects via laser powder bed fusion (L-PBF), developed for complex-shaped parts that demand high strength and superior ductility. Owing to the uneven distribution of the L1<sub>2</sub>-ordered Al<sub>3</sub>(Sc, Zr) nanoparticles, the as-printed alloy demonstrates a hierarchically heterogeneous microstructure featuring a triple-modal grain distribution. Tailored planar defects comprising stacking faults, 9R phase and nanotwins are strategically introduced in the as-printed alloy. Beyond the nano-scaled planar defects and the triple-modal grain distribution, further direct ageing process augments the abundance of nanoprecipitates, collectively boosting the yield strength to 656 MPa, which is higher than almost all L-PBFed Al alloys hitherto reported, and a decent ductility of 7.2 %. This work paves the way for the near net shape forming of high-performance Al alloy components for advanced structural applications.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":null,"pages":null},"PeriodicalIF":21.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additively manufactured fine-grained ultrahigh-strength bulk aluminum alloys with nanostructured strengthening defects\",\"authors\":\"Gan Li ,&nbsp;Chunlu Zhao ,&nbsp;Yuhe Huang ,&nbsp;Qiyang Tan ,&nbsp;Junhua Hou ,&nbsp;Xi He ,&nbsp;Chuan Guo ,&nbsp;Wenjun Lu ,&nbsp;Lin Zhou ,&nbsp;Sida Liu ,&nbsp;Lei Zhang ,&nbsp;Xuliang Chen ,&nbsp;Xinggang Li ,&nbsp;Ying Li ,&nbsp;Junhua Luan ,&nbsp;Zhenmin Li ,&nbsp;Xinping Mao ,&nbsp;Ming-Xing Zhang ,&nbsp;Qiang Zhu ,&nbsp;Jian Lu\",\"doi\":\"10.1016/j.mattod.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the critical need for lightweight designs and carbon neutrality, we introduce an innovative additively manufactured ultrafine-grained Al-Mg-Mn-Sc-Zr alloy reinforced with nano-structured planar defects via laser powder bed fusion (L-PBF), developed for complex-shaped parts that demand high strength and superior ductility. Owing to the uneven distribution of the L1<sub>2</sub>-ordered Al<sub>3</sub>(Sc, Zr) nanoparticles, the as-printed alloy demonstrates a hierarchically heterogeneous microstructure featuring a triple-modal grain distribution. Tailored planar defects comprising stacking faults, 9R phase and nanotwins are strategically introduced in the as-printed alloy. Beyond the nano-scaled planar defects and the triple-modal grain distribution, further direct ageing process augments the abundance of nanoprecipitates, collectively boosting the yield strength to 656 MPa, which is higher than almost all L-PBFed Al alloys hitherto reported, and a decent ductility of 7.2 %. This work paves the way for the near net shape forming of high-performance Al alloy components for advanced structural applications.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124000877\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了满足轻量化设计和碳中和的关键需求,我们介绍了一种创新的添加式制造超细晶粒 Al-Mg-Mn-Sc-Zr 合金,该合金通过激光粉末床熔化(L-PBF)技术用纳米结构的平面缺陷进行强化,适用于需要高强度和优异延展性的复杂形状零件。由于 L12 有序 Al3(Sc,Zr)纳米粒子的不均匀分布,打印后的合金呈现出具有三重模式晶粒分布的分层异质微观结构。量身定制的平面缺陷包括堆叠断层、9R 相和纳米孪晶。除了纳米级平面缺陷和三重模式晶粒分布外,进一步的直接老化过程增加了纳米沉淀物的丰度,共同将屈服强度提高到 656 兆帕,高于迄今为止报道的几乎所有 L-PBFed 铝合金,延展性也达到了 7.2%。这项工作为先进结构应用中高性能铝合金部件的近净成形铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additively manufactured fine-grained ultrahigh-strength bulk aluminum alloys with nanostructured strengthening defects

In response to the critical need for lightweight designs and carbon neutrality, we introduce an innovative additively manufactured ultrafine-grained Al-Mg-Mn-Sc-Zr alloy reinforced with nano-structured planar defects via laser powder bed fusion (L-PBF), developed for complex-shaped parts that demand high strength and superior ductility. Owing to the uneven distribution of the L12-ordered Al3(Sc, Zr) nanoparticles, the as-printed alloy demonstrates a hierarchically heterogeneous microstructure featuring a triple-modal grain distribution. Tailored planar defects comprising stacking faults, 9R phase and nanotwins are strategically introduced in the as-printed alloy. Beyond the nano-scaled planar defects and the triple-modal grain distribution, further direct ageing process augments the abundance of nanoprecipitates, collectively boosting the yield strength to 656 MPa, which is higher than almost all L-PBFed Al alloys hitherto reported, and a decent ductility of 7.2 %. This work paves the way for the near net shape forming of high-performance Al alloy components for advanced structural applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Editorial Board Triboelectrification-induced electroluminescent skin for real-time information recording at a record low pressure threshold of 0.125 kPa Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting The rise of 3D/4D-printed water harvesting materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1