{"title":"释放潜能:SiOx@GNs 复合材料用于制造优质锂离子电池阳极","authors":"","doi":"10.1016/j.jmat.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><div>SiO<em><sub>x</sub></em> is commonly used in lithium-ion batteries because of its capacity and affordability, but it has issues with volume expansion and conductivity. Synthetic methods are crucial for achieving the desired microstructure and material properties. This study introduces a new technique, fluidized bed granulation, to produce SiO<em><sub>x</sub></em>@GNs composites. These composites have a core-shell structure with SiO<em><sub>x</sub></em> particles coated in graphene sheets, and high-energy vibration is used to create a SiO<em><sub>x</sub></em>-Fe structure on the surface. The graphene coating prevents volume expansion and enhances electron transfer. Real-time confocal imaging shows the charging and discharging process. Experiment results show that the SiO<em><sub>x</sub></em>@GNs electrode has a lower expansion rate of 53.60% compared to 73.04% for the SiO electrode, indicating improved electrochemical properties with the graphene coating. After 100 cycles at 2 C, SiO<em><sub>x</sub></em>@GNs demonstrate a reversible capacity of 1265.8 mA⋅h⋅g<sup>−1</sup> and discharge capability at 7 C with a capacity of 1050 mA⋅h⋅g<sup>−1</sup>. The battery retains 90.21% of its capacity after 500 cycles at 0.5 C, showing potential as a LIB anode alternative with a unique structure for different energy storage materials. Fluidized bed granulation can aid in scaling up the use of SiO<em>x</em> anodes in lithium-ion batteries.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing the potential: SiOx@GNs composites for superior lithium-ion battery anodes\",\"authors\":\"\",\"doi\":\"10.1016/j.jmat.2024.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>SiO<em><sub>x</sub></em> is commonly used in lithium-ion batteries because of its capacity and affordability, but it has issues with volume expansion and conductivity. Synthetic methods are crucial for achieving the desired microstructure and material properties. This study introduces a new technique, fluidized bed granulation, to produce SiO<em><sub>x</sub></em>@GNs composites. These composites have a core-shell structure with SiO<em><sub>x</sub></em> particles coated in graphene sheets, and high-energy vibration is used to create a SiO<em><sub>x</sub></em>-Fe structure on the surface. The graphene coating prevents volume expansion and enhances electron transfer. Real-time confocal imaging shows the charging and discharging process. Experiment results show that the SiO<em><sub>x</sub></em>@GNs electrode has a lower expansion rate of 53.60% compared to 73.04% for the SiO electrode, indicating improved electrochemical properties with the graphene coating. After 100 cycles at 2 C, SiO<em><sub>x</sub></em>@GNs demonstrate a reversible capacity of 1265.8 mA⋅h⋅g<sup>−1</sup> and discharge capability at 7 C with a capacity of 1050 mA⋅h⋅g<sup>−1</sup>. The battery retains 90.21% of its capacity after 500 cycles at 0.5 C, showing potential as a LIB anode alternative with a unique structure for different energy storage materials. Fluidized bed granulation can aid in scaling up the use of SiO<em>x</em> anodes in lithium-ion batteries.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001254\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001254","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unleashing the potential: SiOx@GNs composites for superior lithium-ion battery anodes
SiOx is commonly used in lithium-ion batteries because of its capacity and affordability, but it has issues with volume expansion and conductivity. Synthetic methods are crucial for achieving the desired microstructure and material properties. This study introduces a new technique, fluidized bed granulation, to produce SiOx@GNs composites. These composites have a core-shell structure with SiOx particles coated in graphene sheets, and high-energy vibration is used to create a SiOx-Fe structure on the surface. The graphene coating prevents volume expansion and enhances electron transfer. Real-time confocal imaging shows the charging and discharging process. Experiment results show that the SiOx@GNs electrode has a lower expansion rate of 53.60% compared to 73.04% for the SiO electrode, indicating improved electrochemical properties with the graphene coating. After 100 cycles at 2 C, SiOx@GNs demonstrate a reversible capacity of 1265.8 mA⋅h⋅g−1 and discharge capability at 7 C with a capacity of 1050 mA⋅h⋅g−1. The battery retains 90.21% of its capacity after 500 cycles at 0.5 C, showing potential as a LIB anode alternative with a unique structure for different energy storage materials. Fluidized bed granulation can aid in scaling up the use of SiOx anodes in lithium-ion batteries.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.