通过主轴材料、制造和设计的整体优化分析风力涡轮机主轴承单元的功率密度

C. Hollas, Georg Jacobs, Vitali Züch, J. Röder, Niklas Reinisch, Moritz Gouverneur, David Bailly, Maryam Babashahi, Alexander Gramlich
{"title":"通过主轴材料、制造和设计的整体优化分析风力涡轮机主轴承单元的功率密度","authors":"C. Hollas, Georg Jacobs, Vitali Züch, J. Röder, Niklas Reinisch, Moritz Gouverneur, David Bailly, Maryam Babashahi, Alexander Gramlich","doi":"10.1088/1742-6596/2767/8/082003","DOIUrl":null,"url":null,"abstract":"Given the continuous increases in wind turbine (WT) rated power and size, the nacelle weight and logistic handling costs increases significantly. To support heavier nacelles, stronger towers are needed which again increases material costs, so a need for nacelle power density increase arises. One solution to this problem is to increase the power density of the cast or forged WT main shaft. The power density in cast main shafts is limited by the low tensile strength of cast iron. High tensile strength steels, which theoretically increase power density, are used in state-of-the-art forged main shafts. However, their inner shaft diameter is kept small to reduce drilling costs. Since the loads of WT main shafts are dominated by the bending moments of the rotors, a high section modulus corresponds to a high power density. Material near the centre of the shaft therefore decreases the shaft power density. Hollow forging combines high tensile strength steel with a variable inner shaft diameter, enabling shaft designs with increased power density. Additionally, the use of air-hardening ductile (AHD) steel eliminates the need for costly heat treatment if the wall thickness is thin enough. The paper presents a holistic system model for the predesign of main bearing units (MBU) considering various materials and manufacturing methods. The model enables a feasibility assessment of hollow forged main shafts by comparing the resulting MBU weights across a wide range of WT power ratings. The MBU is selected instead of solely analysing the main shaft to account for the bearing and bearing housing weights, which depend on the main shaft geometry. The results show increased MBU power density of up to 23% for hollow forged shafts compared to forged shafts of the same material. Furthermore, when the shaft is hollow forged from AHD steel, the increase is even greater, up to 52%.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Density Analysis of Wind Turbine Main Bearing Units by Holistic Optimization of Material, Manufacturing and Design of the Main Shaft\",\"authors\":\"C. Hollas, Georg Jacobs, Vitali Züch, J. Röder, Niklas Reinisch, Moritz Gouverneur, David Bailly, Maryam Babashahi, Alexander Gramlich\",\"doi\":\"10.1088/1742-6596/2767/8/082003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the continuous increases in wind turbine (WT) rated power and size, the nacelle weight and logistic handling costs increases significantly. To support heavier nacelles, stronger towers are needed which again increases material costs, so a need for nacelle power density increase arises. One solution to this problem is to increase the power density of the cast or forged WT main shaft. The power density in cast main shafts is limited by the low tensile strength of cast iron. High tensile strength steels, which theoretically increase power density, are used in state-of-the-art forged main shafts. However, their inner shaft diameter is kept small to reduce drilling costs. Since the loads of WT main shafts are dominated by the bending moments of the rotors, a high section modulus corresponds to a high power density. Material near the centre of the shaft therefore decreases the shaft power density. Hollow forging combines high tensile strength steel with a variable inner shaft diameter, enabling shaft designs with increased power density. Additionally, the use of air-hardening ductile (AHD) steel eliminates the need for costly heat treatment if the wall thickness is thin enough. The paper presents a holistic system model for the predesign of main bearing units (MBU) considering various materials and manufacturing methods. The model enables a feasibility assessment of hollow forged main shafts by comparing the resulting MBU weights across a wide range of WT power ratings. The MBU is selected instead of solely analysing the main shaft to account for the bearing and bearing housing weights, which depend on the main shaft geometry. The results show increased MBU power density of up to 23% for hollow forged shafts compared to forged shafts of the same material. Furthermore, when the shaft is hollow forged from AHD steel, the increase is even greater, up to 52%.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2767/8/082003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2767/8/082003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着风力涡轮机(WT)额定功率和尺寸的不断增加,机舱重量和物流处理成本也大幅增加。为了支撑更重的机舱,需要更坚固的塔架,这又增加了材料成本,因此需要提高机舱的功率密度。解决这一问题的方法之一是提高铸造或锻造 WT 主轴的功率密度。铸铁主轴的功率密度受到铸铁抗拉强度低的限制。最先进的锻造主轴采用高抗拉强度钢,理论上可提高功率密度。不过,为了降低钻孔成本,它们的内轴直径都很小。由于 WT 主轴的载荷主要来自转子的弯矩,因此高截面模量就意味着高功率密度。因此,靠近轴中心的材料会降低轴的功率密度。空心锻造将高抗拉强度钢与可变的轴内径相结合,使轴的设计能够提高功率密度。此外,如果壁厚足够薄,使用空气硬化韧性(AHD)钢就无需进行昂贵的热处理。本文提出了一个整体系统模型,用于考虑各种材料和制造方法的主轴承单元(MBU)的预先设计。该模型通过比较各种额定功率的 WT 所产生的 MBU 重量,对空心锻造主轴的可行性进行了评估。选择 MBU 而不是只分析主轴,是为了考虑轴承和轴承座的重量,这取决于主轴的几何形状。结果显示,与相同材料的锻造轴相比,空心锻造轴的 MBU 功率密度增加了 23%。此外,当主轴采用 AHD 钢空心锻造时,功率密度的提高幅度更大,可达 52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Density Analysis of Wind Turbine Main Bearing Units by Holistic Optimization of Material, Manufacturing and Design of the Main Shaft
Given the continuous increases in wind turbine (WT) rated power and size, the nacelle weight and logistic handling costs increases significantly. To support heavier nacelles, stronger towers are needed which again increases material costs, so a need for nacelle power density increase arises. One solution to this problem is to increase the power density of the cast or forged WT main shaft. The power density in cast main shafts is limited by the low tensile strength of cast iron. High tensile strength steels, which theoretically increase power density, are used in state-of-the-art forged main shafts. However, their inner shaft diameter is kept small to reduce drilling costs. Since the loads of WT main shafts are dominated by the bending moments of the rotors, a high section modulus corresponds to a high power density. Material near the centre of the shaft therefore decreases the shaft power density. Hollow forging combines high tensile strength steel with a variable inner shaft diameter, enabling shaft designs with increased power density. Additionally, the use of air-hardening ductile (AHD) steel eliminates the need for costly heat treatment if the wall thickness is thin enough. The paper presents a holistic system model for the predesign of main bearing units (MBU) considering various materials and manufacturing methods. The model enables a feasibility assessment of hollow forged main shafts by comparing the resulting MBU weights across a wide range of WT power ratings. The MBU is selected instead of solely analysing the main shaft to account for the bearing and bearing housing weights, which depend on the main shaft geometry. The results show increased MBU power density of up to 23% for hollow forged shafts compared to forged shafts of the same material. Furthermore, when the shaft is hollow forged from AHD steel, the increase is even greater, up to 52%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1