{"title":"基于全介质元表面的锥形光宽场全斯托克斯偏振测量法","authors":"","doi":"10.1016/j.jmat.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>Polarization camera based on CMOS sensor and nano wire-grid technology have found widespread applications in medical diagnostics, remote sensing and industrial inspection. However, the limited filtering properties of wire-grid polarizers and the small field-of-view provided by conventional microlens restrict the energy efficiency of these systems while also increasing their cost, size and weight. In this study, we propose an innovative approach that integrates focusing and splitting of polarization states into a single-layer all-dielectric metasurface. This metasurface enables full-Stokes polarization imaging for a wide field-of-view conical light. The design of the metasurface utilizes a phase compensation method to effectively focus orthogonal polarized conical light onto the central pixel of the CMOS sensor. Theoretical analysis demonstrates that this metasurface can accurately detect full-Stokes parameters within ±20° incident cone angles with an average efficiency reaching 83.0%. The angle can be extended to ±90° with an average efficiency exceeding 80%. We fabricated a three super-pixel metasurface prototype, and experimental measurements reveal its ability to efficiently focus and split three pairs of orthogonal polarization states under ±11° conical angle incidence with an average focusing efficiency of 68.1%. This study presents a promising solution for achieving wide field-of-view and high-efficiency polarization detection in integrated CMOS systems.</p></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 1","pages":"Article 100898"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352847824001242/pdfft?md5=8dfbf588137986c6a7ecf64917ede476&pid=1-s2.0-S2352847824001242-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wide-field full-Stokes polarimetry for conical light based on all-dielectric metasurface\",\"authors\":\"\",\"doi\":\"10.1016/j.jmat.2024.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polarization camera based on CMOS sensor and nano wire-grid technology have found widespread applications in medical diagnostics, remote sensing and industrial inspection. However, the limited filtering properties of wire-grid polarizers and the small field-of-view provided by conventional microlens restrict the energy efficiency of these systems while also increasing their cost, size and weight. In this study, we propose an innovative approach that integrates focusing and splitting of polarization states into a single-layer all-dielectric metasurface. This metasurface enables full-Stokes polarization imaging for a wide field-of-view conical light. The design of the metasurface utilizes a phase compensation method to effectively focus orthogonal polarized conical light onto the central pixel of the CMOS sensor. Theoretical analysis demonstrates that this metasurface can accurately detect full-Stokes parameters within ±20° incident cone angles with an average efficiency reaching 83.0%. The angle can be extended to ±90° with an average efficiency exceeding 80%. We fabricated a three super-pixel metasurface prototype, and experimental measurements reveal its ability to efficiently focus and split three pairs of orthogonal polarization states under ±11° conical angle incidence with an average focusing efficiency of 68.1%. This study presents a promising solution for achieving wide field-of-view and high-efficiency polarization detection in integrated CMOS systems.</p></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 1\",\"pages\":\"Article 100898\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001242/pdfft?md5=8dfbf588137986c6a7ecf64917ede476&pid=1-s2.0-S2352847824001242-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001242\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001242","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wide-field full-Stokes polarimetry for conical light based on all-dielectric metasurface
Polarization camera based on CMOS sensor and nano wire-grid technology have found widespread applications in medical diagnostics, remote sensing and industrial inspection. However, the limited filtering properties of wire-grid polarizers and the small field-of-view provided by conventional microlens restrict the energy efficiency of these systems while also increasing their cost, size and weight. In this study, we propose an innovative approach that integrates focusing and splitting of polarization states into a single-layer all-dielectric metasurface. This metasurface enables full-Stokes polarization imaging for a wide field-of-view conical light. The design of the metasurface utilizes a phase compensation method to effectively focus orthogonal polarized conical light onto the central pixel of the CMOS sensor. Theoretical analysis demonstrates that this metasurface can accurately detect full-Stokes parameters within ±20° incident cone angles with an average efficiency reaching 83.0%. The angle can be extended to ±90° with an average efficiency exceeding 80%. We fabricated a three super-pixel metasurface prototype, and experimental measurements reveal its ability to efficiently focus and split three pairs of orthogonal polarization states under ±11° conical angle incidence with an average focusing efficiency of 68.1%. This study presents a promising solution for achieving wide field-of-view and high-efficiency polarization detection in integrated CMOS systems.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.