用于基于硫酸根的光催化过程的 Z 型 LaFeO3-CuFe2O4 复合材料:协同效应和机理

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chinese Journal of Chemical Engineering Pub Date : 2024-09-01 DOI:10.1016/j.cjche.2024.05.013
{"title":"用于基于硫酸根的光催化过程的 Z 型 LaFeO3-CuFe2O4 复合材料:协同效应和机理","authors":"","doi":"10.1016/j.cjche.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants. However, the development of a suitable and efficient photocatalyst is very challenging. The 40LaFeO<sub>3</sub>-CuFe<sub>2</sub>O<sub>4</sub> (40LFO-CFO) nanocomposite was constructed and its catalytic performance was studied using Rhodamine B (RhB) as the target pollutant. 40LFO-CFO exhibited excellent RhB degradation by the persulfate (PS)-assisted photocatalytic process compared to the pristine LFO and CFO. The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22 h<sup>−1</sup> which is 3.04 times and 5.05 times higher than the pristine LFO (0.73 h<sup>−1</sup>) and CFO (0.44 h<sup>−1</sup>), respectively. Furthermore, the trapping experiments and EPR spectra proved that h<sup>+</sup> plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system. The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation. The recycle tests confessed the stability of 40LFO-CFO. Additionally, the intermediates and products of RhB are detected by liquid chromatography-mass spectrometry (LC-MS), and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed. Moreover, the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics, suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.</p></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Z-scheme LaFeO3-CuFe2O4 composite for sulfate radical-based photocatalytic process: Synergistic effect and mechanism\",\"authors\":\"\",\"doi\":\"10.1016/j.cjche.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants. However, the development of a suitable and efficient photocatalyst is very challenging. The 40LaFeO<sub>3</sub>-CuFe<sub>2</sub>O<sub>4</sub> (40LFO-CFO) nanocomposite was constructed and its catalytic performance was studied using Rhodamine B (RhB) as the target pollutant. 40LFO-CFO exhibited excellent RhB degradation by the persulfate (PS)-assisted photocatalytic process compared to the pristine LFO and CFO. The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22 h<sup>−1</sup> which is 3.04 times and 5.05 times higher than the pristine LFO (0.73 h<sup>−1</sup>) and CFO (0.44 h<sup>−1</sup>), respectively. Furthermore, the trapping experiments and EPR spectra proved that h<sup>+</sup> plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system. The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation. The recycle tests confessed the stability of 40LFO-CFO. Additionally, the intermediates and products of RhB are detected by liquid chromatography-mass spectrometry (LC-MS), and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed. Moreover, the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics, suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.</p></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124001885\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124001885","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于硫酸根的光催化过程被认为是降解有机污染物的最有前途的方法。然而,开发一种合适而高效的光催化剂是非常具有挑战性的。研究人员构建了 40LaFeO3-CuFe2O4 (40LFO-CFO)纳米复合材料,并以罗丹明 B(RhB)为目标污染物研究了其催化性能。与原始的 LFO 和 CFO 相比,40LFO-CFO 在过硫酸盐(PS)辅助的光催化过程中表现出优异的 RhB 降解性能。在 Vis/PS 系统中,40LFO-CFO 对 RhB 的降解速率常数为 2.22 h-1,分别是原始 LFO(0.73 h-1)和 CFO(0.44 h-1)的 3.04 倍和 5.05 倍。此外,捕集实验和 EPR 光谱证明,h+ 在 40LFO-CFO/PS/Vis 系统漂白 RhB 的过程中起主导作用。40LFO-CFO 光催化氧化活性的增强可归因于 Z 型结构导致的 40LFO-CFO 中独特的电荷载流子流动以及光催化和 PS 活化之间的协同效应。循环测试证实了 40LFO-CFO 的稳定性。此外,还利用液相色谱-质谱联用技术(LC-MS)检测了 RhB 的中间产物和生成物,并提出了 40LFO-CFO/Vis/PS 体系光催化降解 RhB 的途径。此外,40LFO-CFO 纳米复合材料对其他有机物具有优异的催化性能,表明其在 PS 辅助光催化过程中具有高催化活性和稳定性,是一种很有前途的异质催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Z-scheme LaFeO3-CuFe2O4 composite for sulfate radical-based photocatalytic process: Synergistic effect and mechanism

The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants. However, the development of a suitable and efficient photocatalyst is very challenging. The 40LaFeO3-CuFe2O4 (40LFO-CFO) nanocomposite was constructed and its catalytic performance was studied using Rhodamine B (RhB) as the target pollutant. 40LFO-CFO exhibited excellent RhB degradation by the persulfate (PS)-assisted photocatalytic process compared to the pristine LFO and CFO. The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22 h−1 which is 3.04 times and 5.05 times higher than the pristine LFO (0.73 h−1) and CFO (0.44 h−1), respectively. Furthermore, the trapping experiments and EPR spectra proved that h+ plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system. The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation. The recycle tests confessed the stability of 40LFO-CFO. Additionally, the intermediates and products of RhB are detected by liquid chromatography-mass spectrometry (LC-MS), and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed. Moreover, the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics, suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
期刊最新文献
Stochastic neuro-swarming intelligence paradigm for the analysis of magneto-hydrodynamic Prandtl–Eyring fluid flow with diffusive magnetic layers effect over an elongated surface Reaction network design and hybrid modeling of S Zorb Improving the accuracy of mechanistic models for dynamic batch distillation enabled by neural network: An industrial plant case Construction of direct-Z-scheme heterojunction photocatalyst of g-C3N4/Ti3C2/TiO2 composite and its degradation behavior for dyes of Rhodamine B Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1