2.8 兆瓦陆基风力涡轮机叶片的边缘结构阻尼

M. Chetan, P. Bortolotti
{"title":"2.8 兆瓦陆基风力涡轮机叶片的边缘结构阻尼","authors":"M. Chetan, P. Bortolotti","doi":"10.1088/1742-6596/2767/2/022069","DOIUrl":null,"url":null,"abstract":"Modern wind turbines push the predictive capabilities of state-of-the-art aero-servo-elastic tools. The existing limitations hide across the numerical tool chain and can result in serious issues, such as missing aeroelastic instabilities during the design phase. Structural damping is an input that is usually hard to estimate, but also has a major impact on the turbine behavior. In this paper, we discuss an experiment that aims to accurately quantify the structural damping characterizing the edgewise modes of modern wind turbine blades. The experiment is carried out on a 2.8-MW land-based wind turbine and features a fast yaw actuation that induces an edgewise motion on one of the three blades. The Covariant-subspace system identification (Cov-SSI) method is then used to post-process the blade root moment to estimate the short-term edgewise structural damping. Despite limitations of the Cov-SSI method, which consistently under-predicts the absolute values of damping, we observe that structural damping decreases across the first three blade edgewise modes, which is different from the stiffness-proportional damping model that assumes that structural damping increases with the modes. This paper argues that a stiffness-proportional damping model, which is implemented in most aeroelastic tools, is therefore not conservative and might hide aeroelastic instabilities that can instead appear in the field.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edgewise Structural Damping of a 2.8-MW Land-Based Wind Turbine Rotor Blade\",\"authors\":\"M. Chetan, P. Bortolotti\",\"doi\":\"10.1088/1742-6596/2767/2/022069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern wind turbines push the predictive capabilities of state-of-the-art aero-servo-elastic tools. The existing limitations hide across the numerical tool chain and can result in serious issues, such as missing aeroelastic instabilities during the design phase. Structural damping is an input that is usually hard to estimate, but also has a major impact on the turbine behavior. In this paper, we discuss an experiment that aims to accurately quantify the structural damping characterizing the edgewise modes of modern wind turbine blades. The experiment is carried out on a 2.8-MW land-based wind turbine and features a fast yaw actuation that induces an edgewise motion on one of the three blades. The Covariant-subspace system identification (Cov-SSI) method is then used to post-process the blade root moment to estimate the short-term edgewise structural damping. Despite limitations of the Cov-SSI method, which consistently under-predicts the absolute values of damping, we observe that structural damping decreases across the first three blade edgewise modes, which is different from the stiffness-proportional damping model that assumes that structural damping increases with the modes. This paper argues that a stiffness-proportional damping model, which is implemented in most aeroelastic tools, is therefore not conservative and might hide aeroelastic instabilities that can instead appear in the field.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2767/2/022069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2767/2/022069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代风力涡轮机对最先进的气动伺服弹性工具的预测能力提出了更高要求。现有的限制隐藏在整个数值工具链中,可能导致严重的问题,例如在设计阶段遗漏气动弹性不稳定性。结构阻尼是通常难以估计的输入,但也对涡轮机的行为有重大影响。在本文中,我们讨论了一项实验,旨在精确量化现代风力涡轮机叶片边缘模式的结构阻尼特征。该实验在一台 2.8 兆瓦陆基风力涡轮机上进行,其特点是快速偏航致动,在三个叶片中的一个叶片上诱发边缘运动。然后使用共变子空间系统识别(Cov-SSI)方法对叶片根部力矩进行后处理,以估算短期边缘结构阻尼。尽管 Cov-SSI 方法有其局限性,它始终无法预测阻尼的绝对值,但我们观察到结构阻尼在叶片的前三个边缘模态中是递减的,这与假定结构阻尼随模态增加而增加的刚度比例阻尼模型不同。本文认为,大多数气动弹性工具采用的刚度比例阻尼模型并不保守,可能会掩盖气动弹性不稳定性,而这种不稳定性可能会在现场出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Edgewise Structural Damping of a 2.8-MW Land-Based Wind Turbine Rotor Blade
Modern wind turbines push the predictive capabilities of state-of-the-art aero-servo-elastic tools. The existing limitations hide across the numerical tool chain and can result in serious issues, such as missing aeroelastic instabilities during the design phase. Structural damping is an input that is usually hard to estimate, but also has a major impact on the turbine behavior. In this paper, we discuss an experiment that aims to accurately quantify the structural damping characterizing the edgewise modes of modern wind turbine blades. The experiment is carried out on a 2.8-MW land-based wind turbine and features a fast yaw actuation that induces an edgewise motion on one of the three blades. The Covariant-subspace system identification (Cov-SSI) method is then used to post-process the blade root moment to estimate the short-term edgewise structural damping. Despite limitations of the Cov-SSI method, which consistently under-predicts the absolute values of damping, we observe that structural damping decreases across the first three blade edgewise modes, which is different from the stiffness-proportional damping model that assumes that structural damping increases with the modes. This paper argues that a stiffness-proportional damping model, which is implemented in most aeroelastic tools, is therefore not conservative and might hide aeroelastic instabilities that can instead appear in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Critical design load case fatigue and ultimate failure simulation for a 10-m H-type vertical-axis wind turbine Three-dimensional stochastic dynamical modeling for wind farm flow estimation A wind turbine digital shadow with tower and blade degrees of freedom - Preliminary results and comparison with a simple tower fore-aft model A semi-empirical model for time-domain tower Vortex induced Vibration load simulations of wind turbines Re in greem while FMU Digitalization of Large-Scale Testing Facilities for the Wind Industry: DIGIT-BENCH Digital Twin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1