{"title":"先进的稀土钽酸盐 RETaO4(RE=镝、钆和钐)具有优异的氧气/热障性能","authors":"","doi":"10.1016/j.jre.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal barrier coatings (TBCs) materials with lowered thermal and oxygen ion conductivity can provide thermal and oxidative protection for high temperature hot-end components in aeronautical engines and gas turbines. The rare-earth tantalate RETaO<sub>4</sub> (RE = Dy, Gd and Sm) ceramics with monoclinic (m) phase were successfully synthesized via spark plasma sintering. Oxygen vacancies responsible for the thermal and oxygen ion conductivities of RETaO<sub>4</sub> were demonstrated by atomic-resolution energy dispersive X-ray and X-ray photoelectron spectroscopy. Among the three samples, DyTaO<sub>4</sub> has excellent oxygen/thermal barrier performance. Compared to the current service thermal barrier coating material ZrO<sub>2</sub>-8 wt% Y<sub>2</sub>O<sub>3</sub> (8 YSZ), DyTaO<sub>4</sub> has an ultra-low oxygen ion conductivity benefiting from low oxygen vacancy concentration and strong stretching force constants. The intrinsic thermal conductivity of DyTaO<sub>4</sub> is 68.2% less than that of 8 YSZ. Additionally, the thermal expansion rate curves indicate that the phase transformation does not happen from room temperature to 1200 °C. The above results demonstrate that high-growth rate thermally grown oxide can be retarded by creating dense DyTaO<sub>4</sub> coating with lowered thermal and oxygen ion conductivity.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1595-1603"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced rare earth tantalate RETaO4 (RE=Dy, Gd and Sm) with excellent oxygen/thermal barrier performance\",\"authors\":\"\",\"doi\":\"10.1016/j.jre.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal barrier coatings (TBCs) materials with lowered thermal and oxygen ion conductivity can provide thermal and oxidative protection for high temperature hot-end components in aeronautical engines and gas turbines. The rare-earth tantalate RETaO<sub>4</sub> (RE = Dy, Gd and Sm) ceramics with monoclinic (m) phase were successfully synthesized via spark plasma sintering. Oxygen vacancies responsible for the thermal and oxygen ion conductivities of RETaO<sub>4</sub> were demonstrated by atomic-resolution energy dispersive X-ray and X-ray photoelectron spectroscopy. Among the three samples, DyTaO<sub>4</sub> has excellent oxygen/thermal barrier performance. Compared to the current service thermal barrier coating material ZrO<sub>2</sub>-8 wt% Y<sub>2</sub>O<sub>3</sub> (8 YSZ), DyTaO<sub>4</sub> has an ultra-low oxygen ion conductivity benefiting from low oxygen vacancy concentration and strong stretching force constants. The intrinsic thermal conductivity of DyTaO<sub>4</sub> is 68.2% less than that of 8 YSZ. Additionally, the thermal expansion rate curves indicate that the phase transformation does not happen from room temperature to 1200 °C. The above results demonstrate that high-growth rate thermally grown oxide can be retarded by creating dense DyTaO<sub>4</sub> coating with lowered thermal and oxygen ion conductivity.</p></div>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"42 8\",\"pages\":\"Pages 1595-1603\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002072124001698\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072124001698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Advanced rare earth tantalate RETaO4 (RE=Dy, Gd and Sm) with excellent oxygen/thermal barrier performance
Thermal barrier coatings (TBCs) materials with lowered thermal and oxygen ion conductivity can provide thermal and oxidative protection for high temperature hot-end components in aeronautical engines and gas turbines. The rare-earth tantalate RETaO4 (RE = Dy, Gd and Sm) ceramics with monoclinic (m) phase were successfully synthesized via spark plasma sintering. Oxygen vacancies responsible for the thermal and oxygen ion conductivities of RETaO4 were demonstrated by atomic-resolution energy dispersive X-ray and X-ray photoelectron spectroscopy. Among the three samples, DyTaO4 has excellent oxygen/thermal barrier performance. Compared to the current service thermal barrier coating material ZrO2-8 wt% Y2O3 (8 YSZ), DyTaO4 has an ultra-low oxygen ion conductivity benefiting from low oxygen vacancy concentration and strong stretching force constants. The intrinsic thermal conductivity of DyTaO4 is 68.2% less than that of 8 YSZ. Additionally, the thermal expansion rate curves indicate that the phase transformation does not happen from room temperature to 1200 °C. The above results demonstrate that high-growth rate thermally grown oxide can be retarded by creating dense DyTaO4 coating with lowered thermal and oxygen ion conductivity.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.