Rémi Marsac , Charlotte Catrouillet , Mathieu Pédrot , Marc F. Benedetti , Aline Dia , Eric D. van Hullebusch , Mélanie Davranche , Yann Sivry , Anne-Catherine Pierson-Wickmann , Mickael Tharaud , Frank Heberling
{"title":"利用可陨落的天然胶体建立平衡表面络合模型:预测微量元素氧化态分布的关键?","authors":"Rémi Marsac , Charlotte Catrouillet , Mathieu Pédrot , Marc F. Benedetti , Aline Dia , Eric D. van Hullebusch , Mélanie Davranche , Yann Sivry , Anne-Catherine Pierson-Wickmann , Mickael Tharaud , Frank Heberling","doi":"10.1016/j.cocis.2024.101820","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting the behavior and fate of redox-sensitive trace elements (TEs; e.g. As, U, Cu, Cr) in natural systems is challenging. Colloids have been reported to control TEs speciation and catalyze TEs redox reactions in many aquatic environments. We hypothesize that the lack of accurate thermodynamic models that account for the role of colloids in TEs speciation explains our inability to predict their redox state distribution in the environment. The slow evolution of the colloidal compartment in response to the prevailing bio/hydro/pedo/climatological conditions need to be decoupled from the fast TEs redox reactions promoted by colloidal surfaces. Further progress is hampered by experimental and theoretical challenges associated with capturing the extreme physical and chemical heterogeneity of colloids, their metastable structures, and their dynamic transformation behavior.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000384/pdfft?md5=0b42978cadbabfbd36d9226625ceef70&pid=1-s2.0-S1359029424000384-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Equilibrium surface complexation modeling with metastable natural colloids: The key to predict the oxidation state distribution of trace elements?\",\"authors\":\"Rémi Marsac , Charlotte Catrouillet , Mathieu Pédrot , Marc F. Benedetti , Aline Dia , Eric D. van Hullebusch , Mélanie Davranche , Yann Sivry , Anne-Catherine Pierson-Wickmann , Mickael Tharaud , Frank Heberling\",\"doi\":\"10.1016/j.cocis.2024.101820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting the behavior and fate of redox-sensitive trace elements (TEs; e.g. As, U, Cu, Cr) in natural systems is challenging. Colloids have been reported to control TEs speciation and catalyze TEs redox reactions in many aquatic environments. We hypothesize that the lack of accurate thermodynamic models that account for the role of colloids in TEs speciation explains our inability to predict their redox state distribution in the environment. The slow evolution of the colloidal compartment in response to the prevailing bio/hydro/pedo/climatological conditions need to be decoupled from the fast TEs redox reactions promoted by colloidal surfaces. Further progress is hampered by experimental and theoretical challenges associated with capturing the extreme physical and chemical heterogeneity of colloids, their metastable structures, and their dynamic transformation behavior.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000384/pdfft?md5=0b42978cadbabfbd36d9226625ceef70&pid=1-s2.0-S1359029424000384-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000384\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000384","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Equilibrium surface complexation modeling with metastable natural colloids: The key to predict the oxidation state distribution of trace elements?
Predicting the behavior and fate of redox-sensitive trace elements (TEs; e.g. As, U, Cu, Cr) in natural systems is challenging. Colloids have been reported to control TEs speciation and catalyze TEs redox reactions in many aquatic environments. We hypothesize that the lack of accurate thermodynamic models that account for the role of colloids in TEs speciation explains our inability to predict their redox state distribution in the environment. The slow evolution of the colloidal compartment in response to the prevailing bio/hydro/pedo/climatological conditions need to be decoupled from the fast TEs redox reactions promoted by colloidal surfaces. Further progress is hampered by experimental and theoretical challenges associated with capturing the extreme physical and chemical heterogeneity of colloids, their metastable structures, and their dynamic transformation behavior.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.