用于变形机载风能风筝的虚拟风洞

Jelle Agatho Wilhelm Poland, R. Schmehl
{"title":"用于变形机载风能风筝的虚拟风洞","authors":"Jelle Agatho Wilhelm Poland, R. Schmehl","doi":"10.1088/1742-6596/2767/7/072001","DOIUrl":null,"url":null,"abstract":"This paper presents a quasi-steady simulation framework for soft-wing kites with suspended control unit employed for airborne wind energy. The kites are subject to actuation-induced and aero-elastic deformation and are described by a coupled aero-structural model in a virtual wind tunnel setup. Key contributions of the present work are a kinetic dynamic relaxation algorithm and a procedure to define a physically consistent initial state. For symmetric actuation, the kite is pitch-statically stable and the simulations converge to a static equilibrium state. Most soft-wing kites are not roll-statically stable and do not find a static equilibrium without a symmetry assumption, as this introduces non-zero roll- and yaw moments. Another important contribution is the introduction of a steady circular flight state that enables convergence without a symmetry assumption. By neglecting gravity, the kite can fly in a perfectly circular turning motion around the wind vector with a constant radius and constant rotational velocity without requiring active control input. In an idealized wind-aligned tether case, the difference in aerodynamic- and centrifugal force application centers makes it impossible to achieve both a force- and moment equilibrium. This was resolved by including an elevation angle that introduces a radial tether force component, which introduces a centrifugal and aerodynamic force difference. Therefore, an operating point with roll equilibrium can be found where the kite finds a static equilibrium, enabling the first quasi-steady simulations of turning flights. Simulated quantifications of soft-wing kite turning behavior, i.e., turning laws, contribute to better kite- and control design.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A virtual wind tunnel for deforming airborne wind energy kites\",\"authors\":\"Jelle Agatho Wilhelm Poland, R. Schmehl\",\"doi\":\"10.1088/1742-6596/2767/7/072001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a quasi-steady simulation framework for soft-wing kites with suspended control unit employed for airborne wind energy. The kites are subject to actuation-induced and aero-elastic deformation and are described by a coupled aero-structural model in a virtual wind tunnel setup. Key contributions of the present work are a kinetic dynamic relaxation algorithm and a procedure to define a physically consistent initial state. For symmetric actuation, the kite is pitch-statically stable and the simulations converge to a static equilibrium state. Most soft-wing kites are not roll-statically stable and do not find a static equilibrium without a symmetry assumption, as this introduces non-zero roll- and yaw moments. Another important contribution is the introduction of a steady circular flight state that enables convergence without a symmetry assumption. By neglecting gravity, the kite can fly in a perfectly circular turning motion around the wind vector with a constant radius and constant rotational velocity without requiring active control input. In an idealized wind-aligned tether case, the difference in aerodynamic- and centrifugal force application centers makes it impossible to achieve both a force- and moment equilibrium. This was resolved by including an elevation angle that introduces a radial tether force component, which introduces a centrifugal and aerodynamic force difference. Therefore, an operating point with roll equilibrium can be found where the kite finds a static equilibrium, enabling the first quasi-steady simulations of turning flights. Simulated quantifications of soft-wing kite turning behavior, i.e., turning laws, contribute to better kite- and control design.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2767/7/072001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2767/7/072001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于机载风能的带悬浮控制装置的软翼风筝的准稳态模拟框架。在虚拟风洞设置中,风筝受到致动诱导和气动弹性变形的影响,并由耦合气动结构模型进行描述。本研究的主要贡献是动力学动态松弛算法和定义物理一致初始状态的程序。对于对称驱动,风筝是俯仰静态稳定的,模拟收敛到静态平衡状态。大多数软翼风筝都不具有滚动稳定性,并且在没有对称性假设的情况下找不到静态平衡,因为这会带来非零的滚动和偏航力矩。另一个重要贡献是引入了稳定的圆周飞行状态,无需对称性假设即可实现收敛。由于忽略了重力,风筝可以在不需要主动控制输入的情况下,以恒定的半径和恒定的旋转速度绕风矢量做完美的圆周旋转运动。在理想化的风向对齐系绳情况下,空气动力和离心力作用中心的不同使得力和力矩不可能达到平衡。解决这一问题的方法是加入一个仰角,引入一个径向系绳力分量,从而引入离心力和空气动力差。因此,可以找到一个具有滚动平衡的操作点,风筝在此找到静态平衡,从而首次实现了转弯飞行的准稳定模拟。通过模拟量化软翼风筝的转弯行为,即转弯规律,有助于更好地进行风筝和控制设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A virtual wind tunnel for deforming airborne wind energy kites
This paper presents a quasi-steady simulation framework for soft-wing kites with suspended control unit employed for airborne wind energy. The kites are subject to actuation-induced and aero-elastic deformation and are described by a coupled aero-structural model in a virtual wind tunnel setup. Key contributions of the present work are a kinetic dynamic relaxation algorithm and a procedure to define a physically consistent initial state. For symmetric actuation, the kite is pitch-statically stable and the simulations converge to a static equilibrium state. Most soft-wing kites are not roll-statically stable and do not find a static equilibrium without a symmetry assumption, as this introduces non-zero roll- and yaw moments. Another important contribution is the introduction of a steady circular flight state that enables convergence without a symmetry assumption. By neglecting gravity, the kite can fly in a perfectly circular turning motion around the wind vector with a constant radius and constant rotational velocity without requiring active control input. In an idealized wind-aligned tether case, the difference in aerodynamic- and centrifugal force application centers makes it impossible to achieve both a force- and moment equilibrium. This was resolved by including an elevation angle that introduces a radial tether force component, which introduces a centrifugal and aerodynamic force difference. Therefore, an operating point with roll equilibrium can be found where the kite finds a static equilibrium, enabling the first quasi-steady simulations of turning flights. Simulated quantifications of soft-wing kite turning behavior, i.e., turning laws, contribute to better kite- and control design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1