FFA-W3-211 机翼跨音速流动效应的实验研究

Abhyuday Aditya, D. de Tavernier, F. Schrijer, B. V. van Oudheusden, D. Von Terzi
{"title":"FFA-W3-211 机翼跨音速流动效应的实验研究","authors":"Abhyuday Aditya, D. de Tavernier, F. Schrijer, B. V. van Oudheusden, D. Von Terzi","doi":"10.1088/1742-6596/2767/2/022031","DOIUrl":null,"url":null,"abstract":"For the largest wind turbines currently designed, when operating at rated power and at high wind speeds, the tip airfoils can experience large negative angles of attack. For these conditions and in combination with turbulence, the airfoils are at risk of reaching locally supersonic flow, even at low free-stream Mach numbers. The possibility of shock wave formation and its consequences endangers the lifetime of these largest rotating machines ever built. So far only numerical analyses of this challenge have been attempted with significant modelling uncertainty. Here, for the first time, a wind turbine airfoil (the FFA-W3-211, used at the blade tip of the IEA 15MW reference wind turbine) is studied under transonic conditions using experimental techniques. Schlieren visualization and Particle Image Velocimetry were employed for free-stream Mach numbers of 0.5 and 0.6 and various angles of attack. It was shown that calculations based on isentropic flow theory and compressibility corrections were able to predict the situations where supersonic flow occurred. However, they could not predict the frequency of occurrence and whether shock waves were formed. In conclusion, an unsteady characterization of such airfoil behavior in transonic flow seems to be warranted.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental investigation of the occurrence of transonic flow effects on the FFA-W3-211 airfoil\",\"authors\":\"Abhyuday Aditya, D. de Tavernier, F. Schrijer, B. V. van Oudheusden, D. Von Terzi\",\"doi\":\"10.1088/1742-6596/2767/2/022031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the largest wind turbines currently designed, when operating at rated power and at high wind speeds, the tip airfoils can experience large negative angles of attack. For these conditions and in combination with turbulence, the airfoils are at risk of reaching locally supersonic flow, even at low free-stream Mach numbers. The possibility of shock wave formation and its consequences endangers the lifetime of these largest rotating machines ever built. So far only numerical analyses of this challenge have been attempted with significant modelling uncertainty. Here, for the first time, a wind turbine airfoil (the FFA-W3-211, used at the blade tip of the IEA 15MW reference wind turbine) is studied under transonic conditions using experimental techniques. Schlieren visualization and Particle Image Velocimetry were employed for free-stream Mach numbers of 0.5 and 0.6 and various angles of attack. It was shown that calculations based on isentropic flow theory and compressibility corrections were able to predict the situations where supersonic flow occurred. However, they could not predict the frequency of occurrence and whether shock waves were formed. In conclusion, an unsteady characterization of such airfoil behavior in transonic flow seems to be warranted.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2767/2/022031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2767/2/022031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于目前设计的最大风力涡轮机,当以额定功率和高风速运行时,翼尖会出现较大的负攻角。在这种情况下,再加上湍流,即使自由流马赫数较低,机翼也有可能达到局部超音速流动。冲击波形成的可能性及其后果会危及这些有史以来最大的旋转机器的使用寿命。迄今为止,人们只尝试过对这一挑战进行数值分析,但存在很大的建模不确定性。在此,首次使用实验技术对跨音速条件下的风力涡轮机翼面(FFA-W3-211,用于 IEA 15MW 参考风力涡轮机的叶尖)进行了研究。在自由流马赫数为 0.5 和 0.6 以及不同攻角的条件下,使用了 Schlieren 可视化和粒子图像测速仪。结果表明,基于等熵流动理论和可压缩性修正的计算能够预测发生超音速流动的情况。但是,它们无法预测发生的频率以及是否会形成冲击波。总之,似乎有必要对这种机翼在跨音速流动中的行为进行非稳态描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of the occurrence of transonic flow effects on the FFA-W3-211 airfoil
For the largest wind turbines currently designed, when operating at rated power and at high wind speeds, the tip airfoils can experience large negative angles of attack. For these conditions and in combination with turbulence, the airfoils are at risk of reaching locally supersonic flow, even at low free-stream Mach numbers. The possibility of shock wave formation and its consequences endangers the lifetime of these largest rotating machines ever built. So far only numerical analyses of this challenge have been attempted with significant modelling uncertainty. Here, for the first time, a wind turbine airfoil (the FFA-W3-211, used at the blade tip of the IEA 15MW reference wind turbine) is studied under transonic conditions using experimental techniques. Schlieren visualization and Particle Image Velocimetry were employed for free-stream Mach numbers of 0.5 and 0.6 and various angles of attack. It was shown that calculations based on isentropic flow theory and compressibility corrections were able to predict the situations where supersonic flow occurred. However, they could not predict the frequency of occurrence and whether shock waves were formed. In conclusion, an unsteady characterization of such airfoil behavior in transonic flow seems to be warranted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1