{"title":"星形传感器的自校准","authors":"Jingneng Fu, Ling Lin, Qiang Li","doi":"10.3390/s24113698","DOIUrl":null,"url":null,"abstract":"Aiming to address the chicken-and-egg problem in star identification and the intrinsic parameter determination processes of on-orbit star sensors, this study proposes an on-orbit self-calibration method for star sensors that does not depend on star identification. First, the self-calibration equations of a star sensor are derived based on the invariance of the interstar angle of a star pair between image frames, without any requirements for the true value of the interstar angle of the star pair. Then, a constant constraint of the optical path from the star spot to the center of the star sensor optical system is defined to reduce the biased estimation in self-calibration. Finally, a scaled nonlinear least square method is developed to solve the self-calibration equations, thus accelerating iteration convergence. Our simulation and analysis results show that the bias of the focal length estimation in on-orbit self-calibration with a constraint is two orders of magnitude smaller than that in on-orbit self-calibration without a constraint. In addition, it is shown that convergence can be achieved in 10 iterations when the scaled nonlinear least square method is used to solve the self-calibration equations. The calibrated intrinsic parameters obtained by the proposed method can be directly used in traditional star map identification methods.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"70 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Calibration for Star Sensors\",\"authors\":\"Jingneng Fu, Ling Lin, Qiang Li\",\"doi\":\"10.3390/s24113698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to address the chicken-and-egg problem in star identification and the intrinsic parameter determination processes of on-orbit star sensors, this study proposes an on-orbit self-calibration method for star sensors that does not depend on star identification. First, the self-calibration equations of a star sensor are derived based on the invariance of the interstar angle of a star pair between image frames, without any requirements for the true value of the interstar angle of the star pair. Then, a constant constraint of the optical path from the star spot to the center of the star sensor optical system is defined to reduce the biased estimation in self-calibration. Finally, a scaled nonlinear least square method is developed to solve the self-calibration equations, thus accelerating iteration convergence. Our simulation and analysis results show that the bias of the focal length estimation in on-orbit self-calibration with a constraint is two orders of magnitude smaller than that in on-orbit self-calibration without a constraint. In addition, it is shown that convergence can be achieved in 10 iterations when the scaled nonlinear least square method is used to solve the self-calibration equations. The calibrated intrinsic parameters obtained by the proposed method can be directly used in traditional star map identification methods.\",\"PeriodicalId\":221960,\"journal\":{\"name\":\"Sensors (Basel, Switzerland)\",\"volume\":\"70 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/s24113698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/s24113698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aiming to address the chicken-and-egg problem in star identification and the intrinsic parameter determination processes of on-orbit star sensors, this study proposes an on-orbit self-calibration method for star sensors that does not depend on star identification. First, the self-calibration equations of a star sensor are derived based on the invariance of the interstar angle of a star pair between image frames, without any requirements for the true value of the interstar angle of the star pair. Then, a constant constraint of the optical path from the star spot to the center of the star sensor optical system is defined to reduce the biased estimation in self-calibration. Finally, a scaled nonlinear least square method is developed to solve the self-calibration equations, thus accelerating iteration convergence. Our simulation and analysis results show that the bias of the focal length estimation in on-orbit self-calibration with a constraint is two orders of magnitude smaller than that in on-orbit self-calibration without a constraint. In addition, it is shown that convergence can be achieved in 10 iterations when the scaled nonlinear least square method is used to solve the self-calibration equations. The calibrated intrinsic parameters obtained by the proposed method can be directly used in traditional star map identification methods.