{"title":"利用模块化磁铁配置设计无源磁力机构,以平衡微型涡旋式压缩机中的轴向气体力","authors":"","doi":"10.1016/j.ijrefrig.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>Miniature scroll compressors (MSCs) are recognized for their superior characteristics—compact design, silent operation and energy-saving performance. One of its main challenges is to maintain dynamic sealing between the fixed and orbiting scrolls during the operation. This paper adopts a passive magnet mechanism (PMM) to balance the axial gas force in MSCs. The PMM with an integral magnet configuration (IMC) is investigated first, and the dimensions of the magnet and fixed ring are found as the paramount factors to determine the magnitude of axial magnetic force. However, the IMC is unable to follow the unsteady characteristics of the target axial gas force, so the scrolls will experience a large period of over-sealing during its operation.</p><p>To overcome this limitation, an innovative modular magnet configuration (MMC) is proposed and investigated. The height of each magnet segment is treated as individual design variable, and genetic algorithm optimization is carried out to seek for the best force balance performance according to two indices—maximum force difference (MFD) and integral-average force difference (IAFD). With precise design of each magnet segment, the MMC is able to provide unsteady magnetic force and thus better balance performance. Compared with the IMC, the improvements are up to 52 % reduction of MFD and 66 % reduction of IAFD. The derived superior MMC designs reveal a common characteristic that the “N” and “E” magnets have short segments at their outer fringe and the “S” and “W” magnets have short segments at their inner fringe. The axial magnetic force characteristics of the IMC and MMC are validated by prototype experiments.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design passive magnetic mechanisms with modular magnet configuration for axial gas force balance in miniature scroll compressors\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Miniature scroll compressors (MSCs) are recognized for their superior characteristics—compact design, silent operation and energy-saving performance. One of its main challenges is to maintain dynamic sealing between the fixed and orbiting scrolls during the operation. This paper adopts a passive magnet mechanism (PMM) to balance the axial gas force in MSCs. The PMM with an integral magnet configuration (IMC) is investigated first, and the dimensions of the magnet and fixed ring are found as the paramount factors to determine the magnitude of axial magnetic force. However, the IMC is unable to follow the unsteady characteristics of the target axial gas force, so the scrolls will experience a large period of over-sealing during its operation.</p><p>To overcome this limitation, an innovative modular magnet configuration (MMC) is proposed and investigated. The height of each magnet segment is treated as individual design variable, and genetic algorithm optimization is carried out to seek for the best force balance performance according to two indices—maximum force difference (MFD) and integral-average force difference (IAFD). With precise design of each magnet segment, the MMC is able to provide unsteady magnetic force and thus better balance performance. Compared with the IMC, the improvements are up to 52 % reduction of MFD and 66 % reduction of IAFD. The derived superior MMC designs reveal a common characteristic that the “N” and “E” magnets have short segments at their outer fringe and the “S” and “W” magnets have short segments at their inner fringe. The axial magnetic force characteristics of the IMC and MMC are validated by prototype experiments.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002020\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002020","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Design passive magnetic mechanisms with modular magnet configuration for axial gas force balance in miniature scroll compressors
Miniature scroll compressors (MSCs) are recognized for their superior characteristics—compact design, silent operation and energy-saving performance. One of its main challenges is to maintain dynamic sealing between the fixed and orbiting scrolls during the operation. This paper adopts a passive magnet mechanism (PMM) to balance the axial gas force in MSCs. The PMM with an integral magnet configuration (IMC) is investigated first, and the dimensions of the magnet and fixed ring are found as the paramount factors to determine the magnitude of axial magnetic force. However, the IMC is unable to follow the unsteady characteristics of the target axial gas force, so the scrolls will experience a large period of over-sealing during its operation.
To overcome this limitation, an innovative modular magnet configuration (MMC) is proposed and investigated. The height of each magnet segment is treated as individual design variable, and genetic algorithm optimization is carried out to seek for the best force balance performance according to two indices—maximum force difference (MFD) and integral-average force difference (IAFD). With precise design of each magnet segment, the MMC is able to provide unsteady magnetic force and thus better balance performance. Compared with the IMC, the improvements are up to 52 % reduction of MFD and 66 % reduction of IAFD. The derived superior MMC designs reveal a common characteristic that the “N” and “E” magnets have short segments at their outer fringe and the “S” and “W” magnets have short segments at their inner fringe. The axial magnetic force characteristics of the IMC and MMC are validated by prototype experiments.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.