通过界面工程提高 Ag(Nb,Ta)O3 薄膜的储能性能

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-06-07 DOI:10.1016/j.jmat.2024.05.005
{"title":"通过界面工程提高 Ag(Nb,Ta)O3 薄膜的储能性能","authors":"","doi":"10.1016/j.jmat.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>Dielectric capacitors with ultrahigh power density and ultra-fast charge/discharge rate are highly desired in pulse power fields. Environmental-friendly AgNbO<sub>3</sub> family have been actively studied for its large polarization and antiferroelectric nature, which greatly boost the electric energy storage performance. However, high-quality AgNbO<sub>3</sub>-based films are difficult to fabricate, leading to a low breakdown field <em>E</em><sub>b</sub> (&lt;1.2 MV/cm) and consequently arising inferior energy storage performance. In this work, we propose an interface engineering strategy to mitigate the breakdown field issue. A Ag(Nb,Ta)O<sub>3</sub>/BaTiO<sub>3</sub> bilayer film is proposed, where the BaTiO<sub>3</sub> layer acts as a p-type semiconductor while Ag(Nb,Ta)O<sub>3</sub> layer is n-type, together with the n-type LaNiO<sub>3</sub> buffer layer on the substrate, forming an n-p-n heterostructure. The n-p-n heterostructure elevates the potential barriers for charge transport, greatly reducing the leakage current. An extremely large breakdown field <em>E</em><sub>b</sub>∼4.3 MV/cm is achieved, being the highest value up to date in the niobate system. A high recoverable energy density <em>W</em><sub>rec</sub>∼62.3 J/cm<sup>3</sup> and a decent efficiency <em>η</em>∼72.3% are obtained, much superior to that of the Ag(Nb,Ta)O<sub>3</sub> monolayer film (<em>W</em><sub>rec</sub>∼46.4 J/cm<sup>3</sup> and <em>η</em>∼80.3% at <em>E</em><sub>b</sub>∼3.3 MV/cm). Our results indicate that interface engineering is an effective method to boost energy storage performance of dielectric film capacitors.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 2","pages":"Article 100895"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced energy storage performance in Ag(Nb,Ta)O3 films via interface engineering\",\"authors\":\"\",\"doi\":\"10.1016/j.jmat.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dielectric capacitors with ultrahigh power density and ultra-fast charge/discharge rate are highly desired in pulse power fields. Environmental-friendly AgNbO<sub>3</sub> family have been actively studied for its large polarization and antiferroelectric nature, which greatly boost the electric energy storage performance. However, high-quality AgNbO<sub>3</sub>-based films are difficult to fabricate, leading to a low breakdown field <em>E</em><sub>b</sub> (&lt;1.2 MV/cm) and consequently arising inferior energy storage performance. In this work, we propose an interface engineering strategy to mitigate the breakdown field issue. A Ag(Nb,Ta)O<sub>3</sub>/BaTiO<sub>3</sub> bilayer film is proposed, where the BaTiO<sub>3</sub> layer acts as a p-type semiconductor while Ag(Nb,Ta)O<sub>3</sub> layer is n-type, together with the n-type LaNiO<sub>3</sub> buffer layer on the substrate, forming an n-p-n heterostructure. The n-p-n heterostructure elevates the potential barriers for charge transport, greatly reducing the leakage current. An extremely large breakdown field <em>E</em><sub>b</sub>∼4.3 MV/cm is achieved, being the highest value up to date in the niobate system. A high recoverable energy density <em>W</em><sub>rec</sub>∼62.3 J/cm<sup>3</sup> and a decent efficiency <em>η</em>∼72.3% are obtained, much superior to that of the Ag(Nb,Ta)O<sub>3</sub> monolayer film (<em>W</em><sub>rec</sub>∼46.4 J/cm<sup>3</sup> and <em>η</em>∼80.3% at <em>E</em><sub>b</sub>∼3.3 MV/cm). Our results indicate that interface engineering is an effective method to boost energy storage performance of dielectric film capacitors.</div></div>\",\"PeriodicalId\":16173,\"journal\":{\"name\":\"Journal of Materiomics\",\"volume\":\"11 2\",\"pages\":\"Article 100895\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materiomics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352847824001217\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在脉冲功率领域,具有超高功率密度和超快充放电速率的电介质电容器备受青睐。环境友好型 AgNbO3 系列因其大极化和反铁电性而受到积极研究,这大大提高了电能存储性能。然而,高质量的 AgNbO3 基薄膜难以制造,导致击穿场 Eb 较低(1.2 MV/cm),储能性能较差。在这项工作中,我们提出了一种界面工程策略来缓解击穿场问题。我们提出了一种 Ag(Nb,Ta)O3/BaTiO3 双层薄膜,其中 BaTiO3 层为 p 型半导体,Ag(Nb,Ta)O3 层为 n 型半导体,与基底上的 n 型 LaNiO3 缓冲层一起形成了 n-p-n 异质结构。n-p-n 异质结构提高了电荷传输的势垒,大大降低了泄漏电流。实现了极大的击穿场强 Eb∼4.3 MV/cm,这是迄今为止铌酸盐系统中的最高值。此外,还获得了较高的可回收能量密度 Wrec∼62.3 J/cm3 和较好的效率 η∼72.3%,远高于 Ag(Nb,Ta)O3 单层薄膜(Eb∼3.3 MV/cm 时为 Wrec∼46.4 J/cm3 和 η∼80.3%)。我们的研究结果表明,界面工程是提高电介质薄膜电容器储能性能的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced energy storage performance in Ag(Nb,Ta)O3 films via interface engineering
Dielectric capacitors with ultrahigh power density and ultra-fast charge/discharge rate are highly desired in pulse power fields. Environmental-friendly AgNbO3 family have been actively studied for its large polarization and antiferroelectric nature, which greatly boost the electric energy storage performance. However, high-quality AgNbO3-based films are difficult to fabricate, leading to a low breakdown field Eb (<1.2 MV/cm) and consequently arising inferior energy storage performance. In this work, we propose an interface engineering strategy to mitigate the breakdown field issue. A Ag(Nb,Ta)O3/BaTiO3 bilayer film is proposed, where the BaTiO3 layer acts as a p-type semiconductor while Ag(Nb,Ta)O3 layer is n-type, together with the n-type LaNiO3 buffer layer on the substrate, forming an n-p-n heterostructure. The n-p-n heterostructure elevates the potential barriers for charge transport, greatly reducing the leakage current. An extremely large breakdown field Eb∼4.3 MV/cm is achieved, being the highest value up to date in the niobate system. A high recoverable energy density Wrec∼62.3 J/cm3 and a decent efficiency η∼72.3% are obtained, much superior to that of the Ag(Nb,Ta)O3 monolayer film (Wrec∼46.4 J/cm3 and η∼80.3% at Eb∼3.3 MV/cm). Our results indicate that interface engineering is an effective method to boost energy storage performance of dielectric film capacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1