使用欧拉-拉格朗日混合求解器计算一对二维圆柱体周围的流动

R. Pasolari, C. Ferreira, A. van Zuijlen
{"title":"使用欧拉-拉格朗日混合求解器计算一对二维圆柱体周围的流动","authors":"R. Pasolari, C. Ferreira, A. van Zuijlen","doi":"10.1088/1742-6596/2767/5/052006","DOIUrl":null,"url":null,"abstract":"The field of external aerodynamics encompasses various engineering disciplines with a significant impact on wind energy technology. Aerodynamic investigations provide insights not only into the characteristics of individual blades or standalone wind turbines but also into entire wind farms. As advancements in wind turbine design continue, understanding the interactions between turbines in close proximity becomes crucial, presenting a multi-body problem. Researchers require efficient and accurate tools to comprehensively study such dynamics. This paper presents a hybrid Eulerian-Lagrangian solver designed to leverage the strengths of Eulerian solvers in resolving boundary layers and Lagrangian solvers in convecting wakes downstream without introducing significant numerical diffusion. The solver adeptly handles multi-body simulations, allowing the construction of independent Eulerian meshes that communicate seamlessly through Lagrangian particles. In this way, the computational study of multibody problems does not require very large and dense meshes. Validation in single-body cases has already been conducted, with this paper demonstrating the solver’s application to a pair of cylinders in different configurations. A comparative performance analysis is carried out against pure Eulerian solvers. The results highlight that the hybrid solver efficiently reproduces the accuracy of the Eulerian solver, demonstrating its effectiveness in handling complex aerodynamic simulations.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow around a pair of 2D cylinders using a hybrid Eulerian-Lagrangian solver\",\"authors\":\"R. Pasolari, C. Ferreira, A. van Zuijlen\",\"doi\":\"10.1088/1742-6596/2767/5/052006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of external aerodynamics encompasses various engineering disciplines with a significant impact on wind energy technology. Aerodynamic investigations provide insights not only into the characteristics of individual blades or standalone wind turbines but also into entire wind farms. As advancements in wind turbine design continue, understanding the interactions between turbines in close proximity becomes crucial, presenting a multi-body problem. Researchers require efficient and accurate tools to comprehensively study such dynamics. This paper presents a hybrid Eulerian-Lagrangian solver designed to leverage the strengths of Eulerian solvers in resolving boundary layers and Lagrangian solvers in convecting wakes downstream without introducing significant numerical diffusion. The solver adeptly handles multi-body simulations, allowing the construction of independent Eulerian meshes that communicate seamlessly through Lagrangian particles. In this way, the computational study of multibody problems does not require very large and dense meshes. Validation in single-body cases has already been conducted, with this paper demonstrating the solver’s application to a pair of cylinders in different configurations. A comparative performance analysis is carried out against pure Eulerian solvers. The results highlight that the hybrid solver efficiently reproduces the accuracy of the Eulerian solver, demonstrating its effectiveness in handling complex aerodynamic simulations.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2767/5/052006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2767/5/052006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

外部空气动力学领域包括对风能技术有重大影响的各种工程学科。空气动力学研究不仅能深入了解单个叶片或独立风力涡轮机的特性,还能了解整个风力发电场的特性。随着风力涡轮机设计的不断进步,了解近距离风力涡轮机之间的相互作用变得至关重要,这就提出了一个多体问题。研究人员需要高效、精确的工具来全面研究这种动力学。本文介绍了一种欧拉-拉格朗日混合求解器,旨在利用欧拉求解器在解决边界层方面的优势和拉格朗日求解器在下游对流湍流方面的优势,同时不引入明显的数值扩散。该求解器能够熟练地处理多体模拟,允许构建独立的欧拉网格,通过拉格朗日粒子进行无缝通信。这样,多体问题的计算研究就不需要非常大和密集的网格。我们已经在单体案例中进行了验证,本文展示了该求解器在不同配置的一对圆柱体中的应用。与纯欧拉求解器进行了性能比较分析。结果表明,混合求解器有效地再现了欧拉求解器的精度,证明了它在处理复杂空气动力学模拟方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow around a pair of 2D cylinders using a hybrid Eulerian-Lagrangian solver
The field of external aerodynamics encompasses various engineering disciplines with a significant impact on wind energy technology. Aerodynamic investigations provide insights not only into the characteristics of individual blades or standalone wind turbines but also into entire wind farms. As advancements in wind turbine design continue, understanding the interactions between turbines in close proximity becomes crucial, presenting a multi-body problem. Researchers require efficient and accurate tools to comprehensively study such dynamics. This paper presents a hybrid Eulerian-Lagrangian solver designed to leverage the strengths of Eulerian solvers in resolving boundary layers and Lagrangian solvers in convecting wakes downstream without introducing significant numerical diffusion. The solver adeptly handles multi-body simulations, allowing the construction of independent Eulerian meshes that communicate seamlessly through Lagrangian particles. In this way, the computational study of multibody problems does not require very large and dense meshes. Validation in single-body cases has already been conducted, with this paper demonstrating the solver’s application to a pair of cylinders in different configurations. A comparative performance analysis is carried out against pure Eulerian solvers. The results highlight that the hybrid solver efficiently reproduces the accuracy of the Eulerian solver, demonstrating its effectiveness in handling complex aerodynamic simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1