感应和叶片弹性建模对风力涡轮机转子性能预测的影响

Navid Aryan, İldeniz Öztürk, Muhammad Juanda Putra, N. Sezer-Uzol, Elif Oğuz, Luca Greco
{"title":"感应和叶片弹性建模对风力涡轮机转子性能预测的影响","authors":"Navid Aryan, İldeniz Öztürk, Muhammad Juanda Putra, N. Sezer-Uzol, Elif Oğuz, Luca Greco","doi":"10.1088/1742-6596/2767/2/022061","DOIUrl":null,"url":null,"abstract":"This study investigates the impact of blade induction modelling on the accuracy of wind turbine rotor aeroelastic predictions. It extends the capabilities of AEOLIAN (AErOeLastic sImulAtioN), a Fluid Structure Interaction (FSI) solver based on Blade Element Momentum Theory (BEMT) coupled with a Lumped Mass approach to represent the blade structure. Herein, AEOLIAN’s analytical wake induction engineering model is replaced with the outcomes of a physically-consistent three-dimensional Free-Vortex Wake (FVW) formulation initially employed in AeroROTOR. This versatile aeroelastic simulation tool is implemented within the framework of MATLAB Simulink/Simscape-Multibody©, a modular environment suitable for industry analysts, researchers, and academic users focusing on wind turbine aero-servo-elastic applications. Furthermore, it serves to lay the groundwork for the development of advanced control laws for multi-megawatt rotors, fostering innovation in the design and optimization of the next-generation wind turbines. The presented analyses focus on predicting the aeroelastic behavior of the bottom-fixed NREL 5MW rotor in uniform axial flow over the operating range, complemented by more detailed investigations at the rated condition undergoing inflow with/without wind misalignment (yaw). The study on key performance parameters is conducted by comparing with the higher-fidelity data from available Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) coupled with CFD.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Induction and Blade Elasticity Modelling on Wind Turbine Rotor Performance Predictions\",\"authors\":\"Navid Aryan, İldeniz Öztürk, Muhammad Juanda Putra, N. Sezer-Uzol, Elif Oğuz, Luca Greco\",\"doi\":\"10.1088/1742-6596/2767/2/022061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the impact of blade induction modelling on the accuracy of wind turbine rotor aeroelastic predictions. It extends the capabilities of AEOLIAN (AErOeLastic sImulAtioN), a Fluid Structure Interaction (FSI) solver based on Blade Element Momentum Theory (BEMT) coupled with a Lumped Mass approach to represent the blade structure. Herein, AEOLIAN’s analytical wake induction engineering model is replaced with the outcomes of a physically-consistent three-dimensional Free-Vortex Wake (FVW) formulation initially employed in AeroROTOR. This versatile aeroelastic simulation tool is implemented within the framework of MATLAB Simulink/Simscape-Multibody©, a modular environment suitable for industry analysts, researchers, and academic users focusing on wind turbine aero-servo-elastic applications. Furthermore, it serves to lay the groundwork for the development of advanced control laws for multi-megawatt rotors, fostering innovation in the design and optimization of the next-generation wind turbines. The presented analyses focus on predicting the aeroelastic behavior of the bottom-fixed NREL 5MW rotor in uniform axial flow over the operating range, complemented by more detailed investigations at the rated condition undergoing inflow with/without wind misalignment (yaw). The study on key performance parameters is conducted by comparing with the higher-fidelity data from available Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) coupled with CFD.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2767/2/022061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2767/2/022061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了叶片感应建模对风力涡轮机转子气动弹性预测精度的影响。它扩展了 AEOLIAN(AErOeLastic sImulAtioN)的功能,AEOLIAN 是一种基于叶片元素动量理论(BEMT)的流体结构相互作用(FSI)求解器,采用块状质量方法来表示叶片结构。在这里,AEOLIAN 的分析型尾流感应工程模型被 AeroROTOR 最初采用的物理上一致的三维自由涡流(FVW)计算结果所取代。这一多功能气动弹性仿真工具是在 MATLAB Simulink/Simscape-Multibody© 框架内实现的,该框架是一个模块化环境,适用于关注风力涡轮机气动伺服弹性应用的行业分析师、研究人员和学术用户。此外,它还为开发先进的兆瓦级转子控制法奠定了基础,促进了下一代风力涡轮机设计和优化的创新。本文的分析重点是预测底部固定的 NREL 5 兆瓦转子在工作范围内均匀轴向流的气动弹性行为,并在有/无风偏差(偏航)的流入额定条件下进行更详细的研究。通过与现有计算流体动力学 (CFD) 和与计算流体动力学 (CFD) 相结合的计算结构动力学 (CSD) 的高保真数据进行比较,对关键性能参数进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Induction and Blade Elasticity Modelling on Wind Turbine Rotor Performance Predictions
This study investigates the impact of blade induction modelling on the accuracy of wind turbine rotor aeroelastic predictions. It extends the capabilities of AEOLIAN (AErOeLastic sImulAtioN), a Fluid Structure Interaction (FSI) solver based on Blade Element Momentum Theory (BEMT) coupled with a Lumped Mass approach to represent the blade structure. Herein, AEOLIAN’s analytical wake induction engineering model is replaced with the outcomes of a physically-consistent three-dimensional Free-Vortex Wake (FVW) formulation initially employed in AeroROTOR. This versatile aeroelastic simulation tool is implemented within the framework of MATLAB Simulink/Simscape-Multibody©, a modular environment suitable for industry analysts, researchers, and academic users focusing on wind turbine aero-servo-elastic applications. Furthermore, it serves to lay the groundwork for the development of advanced control laws for multi-megawatt rotors, fostering innovation in the design and optimization of the next-generation wind turbines. The presented analyses focus on predicting the aeroelastic behavior of the bottom-fixed NREL 5MW rotor in uniform axial flow over the operating range, complemented by more detailed investigations at the rated condition undergoing inflow with/without wind misalignment (yaw). The study on key performance parameters is conducted by comparing with the higher-fidelity data from available Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) coupled with CFD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1